Spaces:
Sleeping
Sleeping
add KNN init. code
Browse files
app.py
CHANGED
@@ -6,6 +6,18 @@ from PIL import Image
|
|
6 |
from io import BytesIO
|
7 |
import os
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Securely get the token from environment variables
|
10 |
MAPILLARY_ACCESS_TOKEN = os.environ.get('MAPILLARY_ACCESS_TOKEN')
|
11 |
|
@@ -60,9 +72,73 @@ def get_nearest_image(lat, lon):
|
|
60 |
st.error(f"Error fetching Mapillary data: {str(e)}")
|
61 |
return None
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def main():
|
64 |
-
st.title("
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Initialize the map centered on Amsterdam
|
67 |
amsterdam_coords = [52.3676, 4.9041]
|
68 |
m = folium.Map(location=amsterdam_coords, zoom_start=13)
|
|
|
6 |
from io import BytesIO
|
7 |
import os
|
8 |
|
9 |
+
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
|
10 |
+
clip_model_name = 'ViT-H-14-378-quickgelu'
|
11 |
+
pretrained_name = 'dfn5b'
|
12 |
+
|
13 |
+
categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety']
|
14 |
+
|
15 |
+
# Set page config
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Percept",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
+
|
21 |
# Securely get the token from environment variables
|
22 |
MAPILLARY_ACCESS_TOKEN = os.environ.get('MAPILLARY_ACCESS_TOKEN')
|
23 |
|
|
|
72 |
st.error(f"Error fetching Mapillary data: {str(e)}")
|
73 |
return None
|
74 |
|
75 |
+
@st.cache_resource
|
76 |
+
def load_model():
|
77 |
+
"""Load the OpenCLIP model and return model and processor"""
|
78 |
+
model, _, preprocess = open_clip.create_model_and_transforms(
|
79 |
+
clip_model_name, pretrained=pretrained_name
|
80 |
+
)
|
81 |
+
tokenizer = open_clip.get_tokenizer(clip_model_name)
|
82 |
+
return model, preprocess, tokenizer
|
83 |
+
|
84 |
+
def process_image(image, preprocess):
|
85 |
+
"""Process image and return tensor"""
|
86 |
+
if isinstance(image, str):
|
87 |
+
# If image is a URL
|
88 |
+
response = requests.get(image)
|
89 |
+
image = Image.open(BytesIO(response.content))
|
90 |
+
# Ensure image is in RGB mode
|
91 |
+
if image.mode != 'RGB':
|
92 |
+
image = image.convert('RGB')
|
93 |
+
processed_image = preprocess(image).unsqueeze(0)
|
94 |
+
return processed_image
|
95 |
+
|
96 |
+
def knn_get_score(knn, k, cat, vec):
|
97 |
+
allvecs = knn[f'{cat}_vecs']
|
98 |
+
if debug: st.write('allvecs.shape', allvecs.shape)
|
99 |
+
scores = knn[f'{cat}_scores']
|
100 |
+
if debug: st.write('scores.shape', scores.shape)
|
101 |
+
# Compute cosine similiarity of vec against allvecs
|
102 |
+
# (both are already normalized)
|
103 |
+
cos_sim_table = vec @ allvecs.T
|
104 |
+
if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
|
105 |
+
# Get sorted array indices by similiarity in descending order
|
106 |
+
sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
|
107 |
+
if debug: st.write('sortinds.shape', sortinds.shape)
|
108 |
+
# Get corresponding scores for the sorted vectors
|
109 |
+
kscores = scores[sortinds][:,:k]
|
110 |
+
if debug: st.write('kscores.shape', kscores.shape)
|
111 |
+
# Get actual sorted similiarity scores
|
112 |
+
# (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here)
|
113 |
+
ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds]
|
114 |
+
ksims = ksims[:,:k]
|
115 |
+
if debug: st.write('ksims.shape', ksims.shape)
|
116 |
+
# Apply normalization after exponential formula
|
117 |
+
ksims = softmax(10**ksims)
|
118 |
+
# Weighted sum
|
119 |
+
kweightedscore = np.sum(kscores * ksims)
|
120 |
+
return kweightedscore
|
121 |
+
|
122 |
+
|
123 |
+
@st.cache_resource
|
124 |
+
def load_knn():
|
125 |
+
return np.load(knnpath)
|
126 |
+
|
127 |
def main():
|
128 |
+
st.title("Percept: Map Explorer")
|
129 |
|
130 |
+
try:
|
131 |
+
with st.spinner('Loading CLIP model... This may take a moment.'):
|
132 |
+
model, preprocess, tokenizer = load_model()
|
133 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
134 |
+
model = model.to(device)
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"Error loading model: {str(e)}")
|
137 |
+
st.info("Please make sure you have enough memory and the correct dependencies installed.")
|
138 |
+
|
139 |
+
with st.spinner('Loading KNN model... This may take a moment.'):
|
140 |
+
knn = load_knn()
|
141 |
+
|
142 |
# Initialize the map centered on Amsterdam
|
143 |
amsterdam_coords = [52.3676, 4.9041]
|
144 |
m = folium.Map(location=amsterdam_coords, zoom_start=13)
|