Spaces:
Sleeping
Sleeping
streamlit app
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- download_model.py +0 -7
- streamlit_app.py +48 -0
__pycache__/app.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
download_model.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from huggingface_hub import hf_hub_download
|
2 |
-
|
3 |
-
REPO_ID = "TheBloke/Llama-2-7B-Chat-GGUF"
|
4 |
-
FILENAME = "llama-2-7b-chat.Q5_K_M.gguf"
|
5 |
-
|
6 |
-
hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
streamlit_app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from app import llm_chain
|
3 |
+
import time
|
4 |
+
from langchain_community.callbacks.streamlit import (
|
5 |
+
StreamlitCallbackHandler,
|
6 |
+
)
|
7 |
+
st.set_page_config(
|
8 |
+
layout="wide",
|
9 |
+
page_title="Khatir Bot",
|
10 |
+
page_icon="🤖",
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def generate_response(prompt):
|
16 |
+
response = llm_chain.invoke(prompt)['text']
|
17 |
+
for word in response.split():
|
18 |
+
yield word + " "
|
19 |
+
time.sleep(0.05)
|
20 |
+
|
21 |
+
st.title("Khatir Bot")
|
22 |
+
|
23 |
+
# Initialize chat history
|
24 |
+
if "messages" not in st.session_state:
|
25 |
+
st.session_state.messages = []
|
26 |
+
|
27 |
+
# Display chat messages from history on app rerun
|
28 |
+
for message in st.session_state.messages:
|
29 |
+
with st.chat_message(message["role"]):
|
30 |
+
st.markdown(message["content"])
|
31 |
+
|
32 |
+
# Accept user input
|
33 |
+
if prompt := st.chat_input("What is up?"):
|
34 |
+
# Add user message to chat history
|
35 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
36 |
+
# Display user message in chat message container
|
37 |
+
with st.chat_message("user"):
|
38 |
+
st.markdown(prompt)
|
39 |
+
|
40 |
+
# Display assistant response in chat message container
|
41 |
+
with st.chat_message("assistant"):
|
42 |
+
st_callback = StreamlitCallbackHandler(st.empty())
|
43 |
+
response = st.write_stream(llm_chain.invoke(
|
44 |
+
{"question":prompt}, {"callbacks": [st_callback]}
|
45 |
+
))
|
46 |
+
|
47 |
+
# Add assistant response to chat history
|
48 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|