SoulPerforms
commited on
Commit
•
63fe18d
1
Parent(s):
aac5a2a
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ import numpy as np
|
|
18 |
from ultralytics import YOLO
|
19 |
|
20 |
# load trained model
|
21 |
-
model = YOLO("best.
|
22 |
|
23 |
# image inference function
|
24 |
def predict_image(img, conf_threshold, iou_threshold):
|
@@ -67,7 +67,7 @@ def pil_to_cv2(pil_image):
|
|
67 |
# process video, convert frame to PIL image
|
68 |
def process_video(video_path):
|
69 |
cap = cv2.VideoCapture(video_path)
|
70 |
-
|
71 |
while cap.isOpened():
|
72 |
ret, frame = cap.read()
|
73 |
if not ret:
|
@@ -77,15 +77,13 @@ def process_video(video_path):
|
|
77 |
result = model.predict(source=pil_img)
|
78 |
for r in result:
|
79 |
im_array = r.plot()
|
80 |
-
|
|
|
81 |
cap.release()
|
|
|
82 |
# You may choose to display each frame or compile them back using cv2 or a similar library
|
83 |
# Display the processed frames
|
84 |
-
|
85 |
-
cv2.imshow("Processed Frame", pil_to_cv2(frame))
|
86 |
-
if cv2.waitKey(25) & 0xFF == ord('q'):
|
87 |
-
break
|
88 |
-
cv2.destroyAllWindows()
|
89 |
# return processed_frames[-1] # Example, returning the last processed frame
|
90 |
|
91 |
# interface setting for video
|
@@ -94,11 +92,11 @@ video_iface = gr.Interface(
|
|
94 |
inputs=[
|
95 |
gr.Video(label="Upload Video", interactive=True)
|
96 |
],
|
97 |
-
outputs=gr.Image(type="
|
98 |
title="Fire Detection using YOLOv8n on Gradio",
|
99 |
description="Upload video for inference. The Ultralytics YOLOv8n trained model is used for inference.",
|
100 |
examples=[
|
101 |
-
|
102 |
[os.path.join(video_directory, "video_fire_2.mp4")],
|
103 |
]
|
104 |
)
|
|
|
18 |
from ultralytics import YOLO
|
19 |
|
20 |
# load trained model
|
21 |
+
model = YOLO("best.onnx")
|
22 |
|
23 |
# image inference function
|
24 |
def predict_image(img, conf_threshold, iou_threshold):
|
|
|
67 |
# process video, convert frame to PIL image
|
68 |
def process_video(video_path):
|
69 |
cap = cv2.VideoCapture(video_path)
|
70 |
+
|
71 |
while cap.isOpened():
|
72 |
ret, frame = cap.read()
|
73 |
if not ret:
|
|
|
77 |
result = model.predict(source=pil_img)
|
78 |
for r in result:
|
79 |
im_array = r.plot()
|
80 |
+
processed_frame = Image.fromarray(im_array[..., ::-1]) # Convert RGB back to BGR
|
81 |
+
yield processed_frame # generate frame one by one
|
82 |
cap.release()
|
83 |
+
|
84 |
# You may choose to display each frame or compile them back using cv2 or a similar library
|
85 |
# Display the processed frames
|
86 |
+
|
|
|
|
|
|
|
|
|
87 |
# return processed_frames[-1] # Example, returning the last processed frame
|
88 |
|
89 |
# interface setting for video
|
|
|
92 |
inputs=[
|
93 |
gr.Video(label="Upload Video", interactive=True)
|
94 |
],
|
95 |
+
outputs=gr.Image(type="pil",label="Result"),
|
96 |
title="Fire Detection using YOLOv8n on Gradio",
|
97 |
description="Upload video for inference. The Ultralytics YOLOv8n trained model is used for inference.",
|
98 |
examples=[
|
99 |
+
[os.path.join(video_directory, "video_fire_1.mp4")],
|
100 |
[os.path.join(video_directory, "video_fire_2.mp4")],
|
101 |
]
|
102 |
)
|