Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
import lancedb | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
db = lancedb.connect(".lancedb") | |
TABLE = db.open_table(os.getenv("TABLE_NAME")) | |
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") | |
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) | |
retriever = SentenceTransformer(os.getenv("EMB_MODEL")) | |
reranker_model = os.getenv("RERANKER_MODEL", None) | |
if reranker_model: | |
reranker = AutoModelForSequenceClassification.from_pretrained(reranker_model) | |
tokenizer = AutoTokenizer.from_pretrained(reranker_model) | |
reranker_pipeline = pipeline("text-classification", model=reranker, tokenizer=tokenizer) | |
def retrieve(query, k, rerank=True): | |
query_vec = retriever.encode(query) | |
try: | |
num_retrieve = k * (5 if rerank else 1) | |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(num_retrieve).to_list() | |
docs = [doc[TEXT_COLUMN] for doc in documents] | |
if not rerank: | |
return docs | |
assert reranker_model, "Reranker model is not provided" | |
reranked_documents = [] | |
for i in range(0, len(docs), BATCH_SIZE): | |
batch_texts = docs[i:i+BATCH_SIZE] | |
inputs = tokenizer([query]*len(batch_texts), batch_texts, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = reranker(**inputs) | |
logits = outputs.logits.squeeze().tolist() | |
reranked_documents.extend(zip(batch_texts, logits)) | |
reranked_documents.sort(key=lambda x: x[1], reverse=True) | |
return [doc[0] for doc in reranked_documents[:k]] | |
except Exception as e: | |
raise gr.Error(str(e)) | |