rag-homework / backend /semantic_search.py
mcvertix's picture
Reranker
e85ef4a
import os
import torch
import gradio as gr
import lancedb
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
db = lancedb.connect(".lancedb")
TABLE = db.open_table(os.getenv("TABLE_NAME"))
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))
retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
reranker_model = os.getenv("RERANKER_MODEL", None)
if reranker_model:
reranker = AutoModelForSequenceClassification.from_pretrained(reranker_model)
tokenizer = AutoTokenizer.from_pretrained(reranker_model)
reranker_pipeline = pipeline("text-classification", model=reranker, tokenizer=tokenizer)
def retrieve(query, k, rerank=True):
query_vec = retriever.encode(query)
try:
num_retrieve = k * (5 if rerank else 1)
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(num_retrieve).to_list()
docs = [doc[TEXT_COLUMN] for doc in documents]
if not rerank:
return docs
assert reranker_model, "Reranker model is not provided"
reranked_documents = []
for i in range(0, len(docs), BATCH_SIZE):
batch_texts = docs[i:i+BATCH_SIZE]
inputs = tokenizer([query]*len(batch_texts), batch_texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = reranker(**inputs)
logits = outputs.logits.squeeze().tolist()
reranked_documents.extend(zip(batch_texts, logits))
reranked_documents.sort(key=lambda x: x[1], reverse=True)
return [doc[0] for doc in reranked_documents[:k]]
except Exception as e:
raise gr.Error(str(e))