Charles Kabui
commited on
Commit
·
22a5952
1
Parent(s):
79904b0
analysis.ipynb
Browse files- analysis.ipynb +358 -0
analysis.ipynb
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "IsB9l3mBIGUN"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"## Analysis"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"%load_ext autoreload\n",
|
19 |
+
"%autoreload 2\n",
|
20 |
+
"\n",
|
21 |
+
"import pandas as pd\n",
|
22 |
+
"from PIL import Image\n",
|
23 |
+
"from scipy.stats import pearsonr\n",
|
24 |
+
"from utils.get_unique_values import get_unique_values\n",
|
25 |
+
"from utils.remove_duplicates import unzip_fn\n",
|
26 |
+
"from utils.show_tile_images import show_tile_images\n",
|
27 |
+
"import zipfile\n",
|
28 |
+
"import json\n",
|
29 |
+
"from utils.visualize_bboxes_on_image import draw_text_on_image\n",
|
30 |
+
"import numpy as np\n",
|
31 |
+
"from sklearn.metrics.pairwise import cosine_similarity"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"metadata": {
|
38 |
+
"id": "5l6iv7ZrIGUP"
|
39 |
+
},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"# !GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/spaces/mckabue/document-similarity-search-using-visual-layout-features --depth=1\n",
|
43 |
+
"\n",
|
44 |
+
"# !wget https://huggingface.co/spaces/mckabue/document-similarity-search-using-visual-layout-features/resolve/main/data/processed/RVL-CDIP-invoice/vectors.json.zip -P ./data/processed/RVL-CDIP-invoice/\n",
|
45 |
+
"\n",
|
46 |
+
"\n",
|
47 |
+
"\n",
|
48 |
+
"# import sys\n",
|
49 |
+
"# sys.path.insert(0, './document-similarity-search-using-visual-layout-features')"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {
|
56 |
+
"id": "172P8Ey8ytD9"
|
57 |
+
},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"# import os\n",
|
61 |
+
"# vectors_chunks = os.listdir('/content/document-similarity-search-using-visual-layout-features/data/processed/RVL-CDIP-invoice/vectors.json.zip.chunks')\n",
|
62 |
+
"# vectors_chunks.sort(key=lambda x: int(x.split('-')[0]))\n",
|
63 |
+
"# vectors_chunks"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"metadata": {
|
70 |
+
"id": "ZZD9JBaWa_T_"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"vectors_df = pd.read_json('./data/local-data/processed/RVL-CDIP-invoice/vectors.json.zip')\n",
|
75 |
+
"vectors_df"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"# https://gemini.google.com/app/8cd4389df12d29e6\n",
|
85 |
+
"\n",
|
86 |
+
"# https://chat.openai.com/c/a345a9ec-9238-4089-a6c0-bb4d375148eb"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "markdown",
|
91 |
+
"metadata": {
|
92 |
+
"id": "X0n7rBnZIGUQ"
|
93 |
+
},
|
94 |
+
"source": [
|
95 |
+
"### Correlation"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"unique_values = get_unique_values(start=0.17, end=1, count=10*1000)\n",
|
105 |
+
"\n",
|
106 |
+
"def get_stats(index: int):\n",
|
107 |
+
" vectors = vectors_df.loc[index, 'vectors']\n",
|
108 |
+
" weighted_vectors = vectors_df.loc[index, 'weighted_vectors']\n",
|
109 |
+
" reduced_vectors = vectors_df.loc[index, 'reduced_vectors']\n",
|
110 |
+
" reduced_weighted_vectors = vectors_df.loc[index, 'reduced_weighted_vectors']\n",
|
111 |
+
" non_zero_vectors, non_zero_uniques = unzip_fn([(vector, unique) for vector, unique in zip(vectors, unique_values) if vector > 0])\n",
|
112 |
+
"\n",
|
113 |
+
" non_zero_vectors__uniques = pearsonr(non_zero_vectors, non_zero_uniques)\n",
|
114 |
+
" vectors___unique_values = pearsonr(vectors, unique_values)\n",
|
115 |
+
" vectors___weighted_vectors = pearsonr(vectors, weighted_vectors)\n",
|
116 |
+
" vectors___reduced_vectors = pearsonr(vectors, reduced_vectors)\n",
|
117 |
+
" vectors___reduced_weighted_vectors = pearsonr(vectors, reduced_weighted_vectors)\n",
|
118 |
+
" weighted_vectors___reduced_vectors = pearsonr(weighted_vectors, reduced_vectors)\n",
|
119 |
+
" weighted_vectors___reduced_weighted_vectors = pearsonr(weighted_vectors, reduced_weighted_vectors)\n",
|
120 |
+
" reduced_vectors___reduced_weighted_vectors = pearsonr(weighted_vectors, reduced_weighted_vectors)\n",
|
121 |
+
"\n",
|
122 |
+
" return {\n",
|
123 |
+
" 'non_zero_vectors__uniques': non_zero_vectors__uniques,\n",
|
124 |
+
" 'vectors___unique_values': vectors___unique_values,\n",
|
125 |
+
" 'vectors___weighted_vectors': vectors___weighted_vectors,\n",
|
126 |
+
" 'vectors___reduced_vectors': vectors___reduced_vectors,\n",
|
127 |
+
" 'vectors___reduced_weighted_vectors': vectors___reduced_weighted_vectors,\n",
|
128 |
+
" 'weighted_vectors___reduced_vectors': weighted_vectors___reduced_vectors,\n",
|
129 |
+
" 'weighted_vectors___reduced_weighted_vectors': weighted_vectors___reduced_weighted_vectors,\n",
|
130 |
+
" 'reduced_vectors___reduced_weighted_vectors': reduced_vectors___reduced_weighted_vectors,\n",
|
131 |
+
" }\n",
|
132 |
+
"\n",
|
133 |
+
"from matplotlib import pyplot as plt\n",
|
134 |
+
"from scipy.signal import convolve\n",
|
135 |
+
"kernel = np.array([0.25, 0.5, 0.25]) # Example kernel for simple averaging\n",
|
136 |
+
"\n",
|
137 |
+
"def smooth_vector(vector):\n",
|
138 |
+
" # Perform convolution\n",
|
139 |
+
" smoothed_vector = convolve(vector, kernel, mode='same') / sum(kernel)\n",
|
140 |
+
" return smoothed_vector\n",
|
141 |
+
"\n",
|
142 |
+
"def get_modified_stats(image_1_index: int, image_2_index: int, vector_column: str = 'vectors', plot = False):\n",
|
143 |
+
" image_1_values = vectors_df.loc[image_1_index, vector_column]\n",
|
144 |
+
" image_2_values = vectors_df.loc[image_2_index, vector_column]\n",
|
145 |
+
"\n",
|
146 |
+
" image_1_matrix = np.array(image_1_values)\n",
|
147 |
+
" image_2_matrix = np.array(image_2_values)\n",
|
148 |
+
"\n",
|
149 |
+
" vector_1_zero_indices = image_1_matrix == 0\n",
|
150 |
+
" vector_2_zero_indices = image_2_matrix == 0\n",
|
151 |
+
"\n",
|
152 |
+
" image_1_matrix[vector_1_zero_indices] = unique_values[vector_1_zero_indices]\n",
|
153 |
+
" image_2_matrix[vector_2_zero_indices] = unique_values[vector_2_zero_indices]\n",
|
154 |
+
"\n",
|
155 |
+
" _old_pearsonr = pearsonr(image_1_values, image_2_values)\n",
|
156 |
+
" [[_old_cosine_similarity]] = cosine_similarity([image_1_values], [image_2_values])\n",
|
157 |
+
" _pearsonr = pearsonr(image_1_matrix, image_2_matrix)\n",
|
158 |
+
" [[_cosine_similarity]] = cosine_similarity([image_1_matrix], [image_2_matrix])\n",
|
159 |
+
"\n",
|
160 |
+
" image_1_matrix_smooth = smooth_vector(image_1_matrix)\n",
|
161 |
+
" image_2_matrix_smooth = smooth_vector(image_2_matrix)\n",
|
162 |
+
" _pearsonr_smooth = pearsonr(image_1_matrix_smooth, image_2_matrix)\n",
|
163 |
+
" [[_cosine_similarity_smooth]] = cosine_similarity([image_1_matrix_smooth], [image_2_matrix])\n",
|
164 |
+
"\n",
|
165 |
+
" permuted_indices = np.random.permutation(len(image_1_matrix))\n",
|
166 |
+
" _pearsonr_random = pearsonr(image_1_matrix[permuted_indices], image_2_matrix[permuted_indices])\n",
|
167 |
+
" [[_cosine_similarity_random]] = cosine_similarity([image_1_matrix[permuted_indices]], [image_2_matrix[permuted_indices]])\n",
|
168 |
+
"\n",
|
169 |
+
" if plot:\n",
|
170 |
+
" plt.figure(figsize=(12, 6))\n",
|
171 |
+
" plt.plot(image_1_values, label='image_1_values', color = 'red')\n",
|
172 |
+
" plt.plot(image_1_matrix_smooth, label='image_1_matrix_smooth', color = 'blue')\n",
|
173 |
+
" # plt.plot(image_1_matrix, label='image_1_matrix', linestyle='--', color = 'blue')\n",
|
174 |
+
" # plt.plot(image_1_matrix_smooth, label='image_1_matrix_smooth', linestyle='--', color = \"green\")\n",
|
175 |
+
" plt.show()\n",
|
176 |
+
"\n",
|
177 |
+
" return {\n",
|
178 |
+
" 'old_pearsonr' : f'{round(_old_pearsonr.statistic, 4)} - {_old_pearsonr.pvalue}',\n",
|
179 |
+
" 'old_cosine_similarity' : round(_old_cosine_similarity, 4),\n",
|
180 |
+
" 'pearsonr' : f'{round(_pearsonr.statistic, 4)} - {_pearsonr.pvalue}',\n",
|
181 |
+
" 'cosine_similarity' : round(_cosine_similarity, 4),\n",
|
182 |
+
" 'pearsonr_smooth' : f'{round(_pearsonr_smooth.statistic, 4)} - {_pearsonr_smooth.pvalue}',\n",
|
183 |
+
" 'cosine_similarity_smooth' : round(_cosine_similarity_smooth, 4),\n",
|
184 |
+
" 'pearsonr_random' : f'{round(_pearsonr_random.statistic, 4)} - {_pearsonr_random.pvalue}',\n",
|
185 |
+
" 'cosine_similarity_random' : round(_cosine_similarity_random, 4),\n",
|
186 |
+
" }\n"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [],
|
194 |
+
"source": [
|
195 |
+
"get_stats(0)"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [],
|
203 |
+
"source": [
|
204 |
+
"with zipfile.ZipFile('./data/local-data/processed/RVL-CDIP-invoice/cosine_similarity_scores/vectors_column.json.zip', \"r\") as zip_ref:\n",
|
205 |
+
" similarity_vectors_json = json.loads(zip_ref.read(zip_ref.filelist[0].filename))"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": null,
|
211 |
+
"metadata": {},
|
212 |
+
"outputs": [],
|
213 |
+
"source": [
|
214 |
+
"top_matches = [\n",
|
215 |
+
" similarity for similarity in \n",
|
216 |
+
" similarity_vectors_json \n",
|
217 |
+
" if similarity['cosine_similarity_score'] > 0.8 and \n",
|
218 |
+
" similarity['document_image_1'] != similarity['document_image_2']]\n",
|
219 |
+
"top_matches.sort(key=lambda similarity: similarity['cosine_similarity_score'], reverse=True)"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": null,
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"def get_image(filename: str):\n",
|
229 |
+
" return Image.open(f'./data/local-data/raw/RVL-CDIP-invoice/{filename}')\n",
|
230 |
+
"\n",
|
231 |
+
"def print_matches(matches, two_column_count, *, start = 0):\n",
|
232 |
+
" images_range = range(start, start + two_column_count)\n",
|
233 |
+
" images = np.array(\n",
|
234 |
+
" [\n",
|
235 |
+
" [\n",
|
236 |
+
" get_image(matches[i]['document_image_1']), \n",
|
237 |
+
" get_image(matches[i]['document_image_2']),\n",
|
238 |
+
" draw_text_on_image(\n",
|
239 |
+
" Image.new(\"RGB\", (800, 1200), 'white'),\n",
|
240 |
+
" [100, 100],\n",
|
241 |
+
" json.dumps(\n",
|
242 |
+
" get_modified_stats(\n",
|
243 |
+
" int(matches[i]['document_image_1'].split('.')[0]), \n",
|
244 |
+
" int(matches[i]['document_image_2'].split('.')[0]), \n",
|
245 |
+
" 'vectors'), \n",
|
246 |
+
" indent=4),\n",
|
247 |
+
" label_text_size=40,\n",
|
248 |
+
" label_rectangle_color='white',\n",
|
249 |
+
" ),\n",
|
250 |
+
" ]\n",
|
251 |
+
" for i\n",
|
252 |
+
" in images_range\n",
|
253 |
+
" ],\n",
|
254 |
+
" dtype=\"object\").flatten().tolist()\n",
|
255 |
+
" titles = np.array(\n",
|
256 |
+
" [\n",
|
257 |
+
" [\n",
|
258 |
+
" f\"{matches[i]['document_image_1']}, Similarity - {round(matches[i]['cosine_similarity_score'], 4)}\", \n",
|
259 |
+
" matches[i]['document_image_2'],\n",
|
260 |
+
" 'More Statistics',\n",
|
261 |
+
" ]\n",
|
262 |
+
" for i\n",
|
263 |
+
" in images_range\n",
|
264 |
+
" ]).flatten().tolist()\n",
|
265 |
+
" width_parts = 3\n",
|
266 |
+
" return show_tile_images(\n",
|
267 |
+
" images,\n",
|
268 |
+
" titles = titles,\n",
|
269 |
+
" width_parts = width_parts,\n",
|
270 |
+
" figsize = (10.2 * width_parts, 12 * (len(images) / width_parts)),\n",
|
271 |
+
" space = 2,\n",
|
272 |
+
" pad = True,\n",
|
273 |
+
" figcolor = '#d3eddd',\n",
|
274 |
+
" title_color = 'black',\n",
|
275 |
+
" title_background_color = 'white',\n",
|
276 |
+
" title_font_size = 30)\n",
|
277 |
+
"\n",
|
278 |
+
"print_matches(top_matches, 2, start=0)"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": null,
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"almost_similar = [similarity for similarity in \n",
|
288 |
+
" similarity_vectors_json \n",
|
289 |
+
" if similarity['cosine_similarity_score'] > 0.9 and similarity['cosine_similarity_score'] < 1.0]\n",
|
290 |
+
"almost_similar.sort(key=lambda similarity: similarity['cosine_similarity_score'], reverse=True)"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": null,
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [],
|
298 |
+
"source": [
|
299 |
+
"print_matches(almost_similar, 5, start=0)"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": null,
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"from app import app\n",
|
309 |
+
"\n",
|
310 |
+
"app()"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": null,
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": [
|
319 |
+
"from utils.get_RGB_image import get_RGB_image\n",
|
320 |
+
"from pdf2image import convert_from_path\n",
|
321 |
+
"\n",
|
322 |
+
"pdf = convert_from_path('./sdfes.png', 140)"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": null,
|
328 |
+
"metadata": {},
|
329 |
+
"outputs": [],
|
330 |
+
"source": [
|
331 |
+
"get_RGB_image(pdf[0]) "
|
332 |
+
]
|
333 |
+
}
|
334 |
+
],
|
335 |
+
"metadata": {
|
336 |
+
"colab": {
|
337 |
+
"provenance": []
|
338 |
+
},
|
339 |
+
"kernelspec": {
|
340 |
+
"display_name": "Python 3",
|
341 |
+
"name": "python3"
|
342 |
+
},
|
343 |
+
"language_info": {
|
344 |
+
"codemirror_mode": {
|
345 |
+
"name": "ipython",
|
346 |
+
"version": 3
|
347 |
+
},
|
348 |
+
"file_extension": ".py",
|
349 |
+
"mimetype": "text/x-python",
|
350 |
+
"name": "python",
|
351 |
+
"nbconvert_exporter": "python",
|
352 |
+
"pygments_lexer": "ipython3",
|
353 |
+
"version": "3.10.13"
|
354 |
+
}
|
355 |
+
},
|
356 |
+
"nbformat": 4,
|
357 |
+
"nbformat_minor": 0
|
358 |
+
}
|