Spaces:
Build error
Build error
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
from transformers import pipeline | |
import os | |
from huggingface_hub import login | |
# Retrieve token from environment variable | |
hugging_face_token = os.getenv("ASR_CEB_HUGGING_FACE_TOKEN") | |
# Login using the token | |
login(token=hugging_face_token) | |
asr_ceb = pipeline("automatic-speech-recognition", model = "sil-ai/wav2vec2-bloom-speech-ceb") | |
asr_whisper_large = pipeline("automatic-speech-recognition", model = "openai/whisper-large-v3") | |
asr_whisper_ceb = pipeline("automatic-speech-recognition", | |
model = "nlewins/whisper-small-translate-X-gen2-examples-quality-step4-1e-6") | |
def transcribe_speech(filepath): | |
if filepath is None: | |
gr.Warning("No audio found, please retry.") | |
return "" | |
_, sample_rate = librosa.load(filepath, sr = None) | |
model_rate = asr_ceb.feature_extractor.sampling_rate | |
if sample_rate != model_rate: | |
filepath = resample_audio_for_processing(filepath, model_rate, sample_rate) | |
output_ceb = asr_ceb(filepath) | |
generate_kwargs = { | |
# "language": "tagalog",#source language | |
"task": "translate" | |
} | |
output_whisper_large_translate = asr_whisper_large(filepath, generate_kwargs = generate_kwargs) | |
output_whisper_large = asr_whisper_large(filepath) | |
output_whisper_ceb = asr_whisper_ceb(filepath) | |
return (output_ceb["text"], output_whisper_large["text"], output_whisper_large_translate["text"], | |
output_whisper_ceb["text"]) | |
def resample_audio_for_processing(filepath, model_rate, sample_rate): | |
print(f"Audio loaded with rate: {sample_rate} Hz while model requires rate: {model_rate} Hz") | |
try: | |
print("Resampling audio...") | |
audio_data, sr = librosa.load(filepath, sr = None) # Audio data will be a NumPy array | |
# Ensure that audio_data is a NumPy array | |
audio_data = np.array(audio_data) | |
# Resample to 16kHz | |
audio_resampled = librosa.resample(audio_data, orig_sr = sample_rate, target_sr = model_rate) | |
# Save the resampled audio | |
resampled_audio_path = 'resampled_audio.wav' | |
sf.write(resampled_audio_path, audio_resampled, 16000) | |
print("Audio resampled successfully.") | |
return resampled_audio_path | |
except Exception as e: | |
print(f"Error resampling audio: {e}, processing with audio as is it !") | |
return filepath | |
mic_transcribe = gr.Interface( | |
fn = transcribe_speech, | |
inputs = gr.Audio(sources = ["microphone"], type = "filepath"), | |
outputs = [gr.Textbox(label = "Transcription CEB (sil-ai)"), gr.Textbox(label = "Transcription (openai)"), | |
gr.Textbox(label = "Translation (openai)"), | |
gr.Textbox(label = "Transcription (nlewins)")] | |
, allow_flagging = "never") | |
file_transcribe = gr.Interface( | |
fn = transcribe_speech, | |
inputs = gr.Audio(sources = ["upload"], type = "filepath"), | |
outputs = [gr.Textbox(label = "Transcription CEB (sil-ai)"), gr.Textbox(label = "Transcription (openai)"), | |
gr.Textbox(label = "Translation (openai)"), | |
gr.Textbox(label = "Translation (nlewins)")] | |
, allow_flagging = "never", | |
) | |
demo = gr.TabbedInterface( | |
[mic_transcribe, file_transcribe], | |
["Use your Microphone", "Upload Audio File"], | |
) | |
if __name__ == '__main__': | |
demo.launch() | |