Spaces:
Sleeping
Sleeping
import numpy as np | |
from pysaliency.roc import general_roc | |
from pysaliency.numba_utils import auc_for_one_positive | |
import torch | |
def _general_auc(positives, negatives): | |
if len(positives) == 1: | |
return auc_for_one_positive(positives[0], negatives) | |
else: | |
return general_roc(positives, negatives)[0] | |
def log_likelihood(log_density, fixation_mask, weights=None): | |
#if weights is None: | |
# weights = torch.ones(log_density.shape[0]) | |
weights = len(weights) * weights.view(-1, 1, 1) / weights.sum() | |
if isinstance(fixation_mask, torch.sparse.IntTensor): | |
dense_mask = fixation_mask.to_dense() | |
else: | |
dense_mask = fixation_mask | |
fixation_count = dense_mask.sum(dim=(-1, -2), keepdim=True) | |
ll = torch.mean( | |
weights * torch.sum(log_density * dense_mask, dim=(-1, -2), keepdim=True) / fixation_count | |
) | |
return (ll + np.log(log_density.shape[-1] * log_density.shape[-2])) / np.log(2) | |
def nss(log_density, fixation_mask, weights=None): | |
weights = len(weights) * weights.view(-1, 1, 1) / weights.sum() | |
if isinstance(fixation_mask, torch.sparse.IntTensor): | |
dense_mask = fixation_mask.to_dense() | |
else: | |
dense_mask = fixation_mask | |
fixation_count = dense_mask.sum(dim=(-1, -2), keepdim=True) | |
density = torch.exp(log_density) | |
mean, std = torch.std_mean(density, dim=(-1, -2), keepdim=True) | |
saliency_map = (density - mean) / std | |
nss = torch.mean( | |
weights * torch.sum(saliency_map * dense_mask, dim=(-1, -2), keepdim=True) / fixation_count | |
) | |
return nss | |
def auc(log_density, fixation_mask, weights=None): | |
weights = len(weights) * weights / weights.sum() | |
# TODO: This doesn't account for multiple fixations in the same location! | |
def image_auc(log_density, fixation_mask): | |
if isinstance(fixation_mask, torch.sparse.IntTensor): | |
dense_mask = fixation_mask.to_dense() | |
else: | |
dense_mask = fixation_mask | |
positives = torch.masked_select(log_density, dense_mask.type(torch.bool)).detach().cpu().numpy().astype(np.float64) | |
negatives = log_density.flatten().detach().cpu().numpy().astype(np.float64) | |
auc = _general_auc(positives, negatives) | |
return torch.tensor(auc) | |
return torch.mean(weights.cpu() * torch.tensor([ | |
image_auc(log_density[i], fixation_mask[i]) for i in range(log_density.shape[0]) | |
])) | |