mbar0075's picture
Testing Commit
c9baa67
raw
history blame
15.8 kB
# pylint: disable=missing-module-docstring,invalid-name
# pylint: disable=missing-docstring
# pylint: disable=line-too-long
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm(nn.Module):
r"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions which have to be of the shape specified by
:attr:`normalized_shape`.
:math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
\times \ldots \times \text{normalized\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
__constants__ = ['features', 'weight', 'bias', 'eps', 'center', 'scale']
def __init__(self, features, eps=1e-12, center=True, scale=True):
super(LayerNorm, self).__init__()
self.features = features
self.eps = eps
self.center = center
self.scale = scale
if self.scale:
self.weight = nn.Parameter(torch.Tensor(self.features))
else:
self.register_parameter('weight', None)
if self.center:
self.bias = nn.Parameter(torch.Tensor(self.features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.scale:
nn.init.ones_(self.weight)
if self.center:
nn.init.zeros_(self.bias)
def adjust_parameter(self, tensor, parameter):
return torch.repeat_interleave(
torch.repeat_interleave(
parameter.view(-1, 1, 1),
repeats=tensor.shape[2],
dim=1),
repeats=tensor.shape[3],
dim=2
)
def forward(self, input):
normalized_shape = (self.features, input.shape[2], input.shape[3])
weight = self.adjust_parameter(input, self.weight)
bias = self.adjust_parameter(input, self.bias)
return F.layer_norm(
input, normalized_shape, weight, bias, self.eps)
def extra_repr(self):
return '{features}, eps={eps}, ' \
'center={center}, scale={scale}'.format(**self.__dict__)
def gaussian_filter_1d(tensor, dim, sigma, truncate=4, kernel_size=None, padding_mode='replicate', padding_value=0.0):
sigma = torch.as_tensor(sigma, device=tensor.device, dtype=tensor.dtype)
if kernel_size is not None:
kernel_size = torch.as_tensor(kernel_size, device=tensor.device, dtype=torch.int64)
else:
kernel_size = torch.as_tensor(2 * torch.ceil(truncate * sigma) + 1, device=tensor.device, dtype=torch.int64)
kernel_size = kernel_size.detach()
kernel_size_int = kernel_size.detach().cpu().numpy()
mean = (torch.as_tensor(kernel_size, dtype=tensor.dtype) - 1) / 2
grid = torch.arange(kernel_size, device=tensor.device) - mean
kernel_shape = (1, 1, kernel_size)
grid = grid.view(kernel_shape)
grid = grid.detach()
source_shape = tensor.shape
tensor = torch.movedim(tensor, dim, len(source_shape)-1)
dim_last_shape = tensor.shape
assert tensor.shape[-1] == source_shape[dim]
# we need reshape instead of view for batches like B x C x H x W
tensor = tensor.reshape(-1, 1, source_shape[dim])
padding = (math.ceil((kernel_size_int - 1) / 2), math.ceil((kernel_size_int - 1) / 2))
tensor_ = F.pad(tensor, padding, padding_mode, padding_value)
# create gaussian kernel from grid using current sigma
kernel = torch.exp(-0.5 * (grid / sigma) ** 2)
kernel = kernel / kernel.sum()
# convolve input with gaussian kernel
tensor_ = F.conv1d(tensor_, kernel)
tensor_ = tensor_.view(dim_last_shape)
tensor_ = torch.movedim(tensor_, len(source_shape)-1, dim)
assert tensor_.shape == source_shape
return tensor_
class GaussianFilterNd(nn.Module):
"""A differentiable gaussian filter"""
def __init__(self, dims, sigma, truncate=4, kernel_size=None, padding_mode='replicate', padding_value=0.0,
trainable=False):
"""Creates a 1d gaussian filter
Args:
dims ([int]): the dimensions to which the gaussian filter is applied. Negative values won't work
sigma (float): standard deviation of the gaussian filter (blur size)
input_dims (int, optional): number of input dimensions ignoring batch and channel dimension,
i.e. use input_dims=2 for images (default: 2).
truncate (float, optional): truncate the filter at this many standard deviations (default: 4.0).
This has no effect if the `kernel_size` is explicitely set
kernel_size (int): size of the gaussian kernel convolved with the input
padding_mode (string, optional): Padding mode implemented by `torch.nn.functional.pad`.
padding_value (string, optional): Value used for constant padding.
"""
# IDEA determine input_dims dynamically for every input
super(GaussianFilterNd, self).__init__()
self.dims = dims
self.sigma = nn.Parameter(torch.tensor(sigma, dtype=torch.float32), requires_grad=trainable) # default: no optimization
self.truncate = truncate
self.kernel_size = kernel_size
# setup padding
self.padding_mode = padding_mode
self.padding_value = padding_value
def forward(self, tensor):
"""Applies the gaussian filter to the given tensor"""
for dim in self.dims:
tensor = gaussian_filter_1d(
tensor,
dim=dim,
sigma=self.sigma,
truncate=self.truncate,
kernel_size=self.kernel_size,
padding_mode=self.padding_mode,
padding_value=self.padding_value,
)
return tensor
class Conv2dMultiInput(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
for k, _in_channels in enumerate(in_channels):
if _in_channels:
setattr(self, f'conv_part{k}', nn.Conv2d(_in_channels, out_channels, kernel_size, bias=bias))
def forward(self, tensors):
assert len(tensors) == len(self.in_channels)
out = None
for k, (count, tensor) in enumerate(zip(self.in_channels, tensors)):
if not count:
continue
_out = getattr(self, f'conv_part{k}')(tensor)
if out is None:
out = _out
else:
out += _out
return out
# def extra_repr(self):
# return f'{self.in_channels}'
class LayerNormMultiInput(nn.Module):
__constants__ = ['features', 'weight', 'bias', 'eps', 'center', 'scale']
def __init__(self, features, eps=1e-12, center=True, scale=True):
super().__init__()
self.features = features
self.eps = eps
self.center = center
self.scale = scale
for k, _features in enumerate(features):
if _features:
setattr(self, f'layernorm_part{k}', LayerNorm(_features, eps=eps, center=center, scale=scale))
def forward(self, tensors):
assert len(tensors) == len(self.features)
out = []
for k, (count, tensor) in enumerate(zip(self.features, tensors)):
if not count:
assert tensor is None
out.append(None)
continue
out.append(getattr(self, f'layernorm_part{k}')(tensor))
return out
class Bias(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.bias = nn.Parameter(torch.zeros(channels))
def forward(self, tensor):
return tensor + self.bias[np.newaxis, :, np.newaxis, np.newaxis]
def extra_repr(self):
return f'channels={self.channels}'
class SelfAttention(nn.Module):
""" Self attention Layer
adapted from https://discuss.pytorch.org/t/attention-in-image-classification/80147/3
"""
def __init__(self, in_channels, out_channels=None, key_channels=None, activation=None, skip_connection_with_convolution=False, return_attention=True):
super().__init__()
self.in_channels = in_channels
if out_channels is None:
out_channels = in_channels
self.out_channels = out_channels
if key_channels is None:
key_channels = in_channels // 8
self.key_channels = key_channels
self.activation = activation
self.skip_connection_with_convolution = skip_connection_with_convolution
if not self.skip_connection_with_convolution:
if self.out_channels != self.in_channels:
raise ValueError("out_channels has to be equal to in_channels with true skip connection!")
self.return_attention = return_attention
self.query_conv = nn.Conv2d(in_channels=in_channels, out_channels=key_channels, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_channels, out_channels=key_channels, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
if self.skip_connection_with_convolution:
self.skip_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (*W*H)
energy = torch.bmm(proj_query, proj_key) # transpose check
attention = self.softmax(energy) # BX (N) X (N)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, self.out_channels, width, height)
if self.skip_connection_with_convolution:
skip_connection = self.skip_conv(x)
else:
skip_connection = x
out = self.gamma * out + skip_connection
if self.activation is not None:
out = self.activation(out)
if self.return_attention:
return out, attention
return out
class MultiHeadSelfAttention(nn.Module):
""" Self attention Layer
adapted from https://discuss.pytorch.org/t/attention-in-image-classification/80147/3
"""
def __init__(self, in_channels, heads, out_channels=None, key_channels=None, activation=None, skip_connection_with_convolution=False):
super().__init__()
self.heads = heads
self.heads = nn.ModuleList([SelfAttention(
in_channels=in_channels,
out_channels=out_channels,
key_channels=key_channels,
activation=activation,
skip_connection_with_convolution=skip_connection_with_convolution,
return_attention=False,
) for _ in range(heads)])
def forward(self, tensor):
outs = [head(tensor) for head in self.heads]
out = torch.cat(outs, dim=1)
return out
class FlexibleScanpathHistoryEncoding(nn.Module):
"""
a convolutional layer which works for different numbers of previous fixations.
Nonexistent fixations will deactivate the respective convolutions
the bias will be added per fixation (if the given fixation is present)
"""
def __init__(self, in_fixations, channels_per_fixation, out_channels, kernel_size, bias=True,):
super().__init__()
self.in_fixations = in_fixations
self.channels_per_fixation = channels_per_fixation
self.out_channels = out_channels
self.kernel_size = kernel_size
self.bias = bias
self.convolutions = nn.ModuleList([
nn.Conv2d(
in_channels=self.channels_per_fixation,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
bias=self.bias
) for i in range(in_fixations)
])
def forward(self, tensor):
results = None
valid_fixations = ~torch.isnan(
tensor[:, :self.in_fixations, 0, 0]
)
# print("valid fix", valid_fixations)
for fixation_index in range(self.in_fixations):
valid_indices = valid_fixations[:, fixation_index]
if not torch.any(valid_indices):
continue
this_input = tensor[
valid_indices,
fixation_index::self.in_fixations
]
this_result = self.convolutions[fixation_index](
this_input
)
# TODO: This will break if all data points
# in the batch don't have a single fixation
# but that's not a case I intend to train
# anyway.
if results is None:
b, _, _, _ = tensor.shape
_, _, h, w = this_result.shape
results = torch.zeros(
(b, self.out_channels, h, w),
dtype=tensor.dtype,
device=tensor.device
)
results[valid_indices] += this_result
return results