Spaces:
Running
Running
from typing import Tuple | |
import gradio as gr | |
import numpy as np | |
import cv2 | |
import SaRa.saraRC1 as sara | |
import warnings | |
warnings.filterwarnings("ignore") | |
ALPHA = 0.4 | |
GENERATORS = ['itti', 'deepgaze'] | |
MARKDOWN = """ | |
<h1 style='text-align: center'>Saliency Ranking π₯</h1> | |
Saliency Ranking is a fundamental π **Computer Vision** π process aimed at discerning the most visually significant features within an image πΌοΈ. | |
π This demo showcases the **SaRa (Saliency-Driven Object Ranking)** model for Saliency Ranking π―, which can efficiently rank the visual saliency of an image without requiring any training. πΌοΈ | |
This technique is configured on the Saliency Map generator model by Itti, which works based on the primate visual cortex π§ , and can work with or without depth information π. | |
<div style="display: flex; align-items: center;"> | |
<a href="https://github.com/dylanseychell/SaliencyRanking" style="margin-right: 10px;"> | |
<img src="https://badges.aleen42.com/src/github.svg"> | |
</a> | |
<a href="https://github.com/mbar0075/SaRa" style="margin-right: 10px;"> | |
<img src="https://badges.aleen42.com/src/github.svg"> | |
</a> | |
<a href="https://github.com/matthewkenely/ICT3909" style="margin-right: 10px;"> | |
<img src="https://badges.aleen42.com/src/github.svg"> | |
</a> | |
</div> | |
""" | |
IMAGE_EXAMPLES = [ | |
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 32], | |
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 32], | |
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 32], | |
] | |
def detect_and_annotate(image, | |
GRID_SIZE, | |
generator, | |
ALPHA=ALPHA, | |
mode=1)-> np.ndarray: | |
# Converting from PIL to OpenCV | |
image = np.array(image) | |
# Convert image from BGR to RGB | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Copy and convert the image for sara processing | |
sara_image = image.copy() | |
# sara_image = cv2.cvtColor(sara_image, cv2.COLOR_RGB2BGR) | |
# Resetting sara | |
sara.reset() | |
# Running sara (Original implementation on itti) | |
sara_info = sara.return_sara(sara_image, GRID_SIZE, generator, mode=mode) | |
# Generate saliency map | |
saliency_map = sara.return_saliency(image, generator=generator) | |
# Resize saliency map to match the image size | |
saliency_map = cv2.resize(saliency_map, (image.shape[1], image.shape[0])) | |
# Apply color map and convert to RGB | |
saliency_map = cv2.applyColorMap(saliency_map, cv2.COLORMAP_JET) | |
saliency_map = cv2.cvtColor(saliency_map, cv2.COLOR_BGR2RGB) | |
# Overlay the saliency map on the original image | |
saliency_map = cv2.addWeighted(saliency_map, ALPHA, image, 1-ALPHA, 0) | |
# Extract and convert heatmap to RGB | |
heatmap = sara_info[0] | |
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) | |
return saliency_map, heatmap | |
def process_image( | |
input_image: np.ndarray, | |
GRIDSIZE: int, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | |
# Validate GRID_SIZE | |
if GRIDSIZE is None and GRIDSIZE < 4: | |
GRIDSIZE = 9 | |
itti_saliency_map, itti_heatmap = detect_and_annotate( | |
input_image, GRIDSIZE, 'itti') | |
_, itti_heatmap2 = detect_and_annotate( | |
input_image, GRIDSIZE, 'itti', mode=2) | |
# deepgaze_saliency_map, deepgaze_heatmap = detect_and_annotate( | |
# input_image, GRIDSIZE, 'deepgaze') | |
return ( | |
itti_saliency_map, | |
itti_heatmap, | |
itti_heatmap2, | |
# deepgaze_saliency_map, | |
# deepgaze_heatmap, | |
) | |
grid_size_Component = gr.Slider( | |
minimum=4, | |
maximum=70, | |
value=32, | |
step=1, | |
label="Grid Size", | |
info=( | |
"The grid size for the Saliency Ranking (SaRa) model. The grid size determines " | |
"the number of regions the image is divided into. A higher grid size results in " | |
"more regions and a lower grid size results in fewer regions. The default grid " | |
"size is 9." | |
)) | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Accordion("Configuration", open=False): | |
with gr.Row(): | |
grid_size_Component.render() | |
with gr.Row(): | |
input_image_component = gr.Image( | |
type='pil', | |
label='Input' | |
) | |
itti_saliency_map = gr.Image( | |
type='pil', | |
label='Itti Saliency Map' | |
) | |
with gr.Row(): | |
itti_heatmap = gr.Image( | |
type='pil', | |
label='Saliency Ranking Heatmap 1' | |
) | |
itti_heatmap2 = gr.Image( | |
type='pil', | |
label='Saliency Ranking Heatmap 2' | |
) | |
# with gr.Row(): | |
# deepgaze_saliency_map = gr.Image( | |
# type='pil', | |
# label='DeepGaze Saliency Map' | |
# ) | |
# deepgaze_heatmap = gr.Image( | |
# type='pil', | |
# label='DeepGaze Saliency Ranking Heatmap' | |
# ) | |
submit_button_component = gr.Button( | |
value='Submit', | |
scale=1, | |
variant='primary' | |
) | |
gr.Examples( | |
fn=process_image, | |
examples=IMAGE_EXAMPLES, | |
inputs=[ | |
input_image_component, | |
grid_size_Component, | |
], | |
outputs=[ | |
itti_saliency_map, | |
itti_heatmap, | |
itti_heatmap2, | |
# deepgaze_saliency_map, | |
# deepgaze_heatmap, | |
] | |
) | |
submit_button_component.click( | |
fn=process_image, | |
inputs=[ | |
input_image_component, | |
grid_size_Component, | |
], | |
outputs=[ | |
itti_saliency_map, | |
itti_heatmap, | |
itti_heatmap2, | |
# deepgaze_saliency_map, | |
# deepgaze_heatmap, | |
] | |
) | |
demo.launch(debug=False, show_error=True, max_threads=1) |