Spaces:
Runtime error
Runtime error
refactor the code
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import tempfile
|
4 |
-
from functools import partial
|
5 |
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import rembg
|
|
|
9 |
import torch
|
10 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
11 |
from einops import rearrange
|
@@ -16,8 +16,9 @@ from pytorch_lightning import seed_everything
|
|
16 |
from torchvision.transforms import v2
|
17 |
from tqdm import tqdm
|
18 |
|
19 |
-
from src.utils.camera_util import FOV_to_intrinsics, get_circular_camera_poses,
|
20 |
-
|
|
|
21 |
from src.utils.mesh_util import save_glb, save_obj
|
22 |
from src.utils.train_util import instantiate_from_config
|
23 |
|
@@ -42,50 +43,13 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
|
|
42 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
43 |
else:
|
44 |
extrinsics = c2ws.flatten(-2)
|
45 |
-
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(
|
|
|
46 |
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
47 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
48 |
return cameras
|
49 |
|
50 |
|
51 |
-
def load_models(config_path):
|
52 |
-
config = OmegaConf.load(config_path)
|
53 |
-
config_name = os.path.basename(config_path).replace('.yaml', '')
|
54 |
-
model_config = config.model_config
|
55 |
-
infer_config = config.infer_config
|
56 |
-
|
57 |
-
is_flexicubes = config_name.startswith('instant-mesh')
|
58 |
-
|
59 |
-
device = torch.device('cuda')
|
60 |
-
|
61 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
62 |
-
"sudo-ai/zero123plus-v1.2",
|
63 |
-
custom_pipeline="zero123plus",
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
)
|
66 |
-
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
67 |
-
pipeline.scheduler.config, timestep_spacing='trailing'
|
68 |
-
)
|
69 |
-
|
70 |
-
unet_ckpt_path = hf_hub_download(
|
71 |
-
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
72 |
-
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
73 |
-
pipeline.unet.load_state_dict(state_dict, strict=True)
|
74 |
-
|
75 |
-
pipeline = pipeline.to(device)
|
76 |
-
|
77 |
-
model_ckpt_path = hf_hub_download(
|
78 |
-
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
79 |
-
model = instantiate_from_config(model_config)
|
80 |
-
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
81 |
-
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
82 |
-
model.load_state_dict(state_dict, strict=True)
|
83 |
-
|
84 |
-
model = model.to(device)
|
85 |
-
|
86 |
-
return pipeline, model, is_flexicubes, infer_config
|
87 |
-
|
88 |
-
|
89 |
def check_input_image(input_image):
|
90 |
if input_image is None:
|
91 |
raise gr.Error("No image uploaded!")
|
@@ -101,27 +65,28 @@ def preprocess(input_image, do_remove_background):
|
|
101 |
return input_image
|
102 |
|
103 |
|
104 |
-
|
|
|
105 |
seed_everything(sample_seed)
|
106 |
|
107 |
z123_image = pipeline(
|
108 |
-
input_image,
|
109 |
-
num_inference_steps=sample_steps
|
110 |
-
).images[0]
|
111 |
|
112 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
113 |
show_image = torch.from_numpy(show_image)
|
114 |
-
show_image = rearrange(
|
115 |
-
|
|
|
|
|
116 |
show_image = Image.fromarray(show_image.numpy())
|
117 |
|
118 |
return z123_image, show_image
|
119 |
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if
|
125 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
126 |
model = model.eval()
|
127 |
|
@@ -129,20 +94,25 @@ def make3d(images, model, is_flexicubes, infer_config):
|
|
129 |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
130 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
131 |
|
132 |
-
input_cameras = get_zero123plus_input_cameras(
|
133 |
-
|
|
|
|
|
134 |
|
135 |
images = images.unsqueeze(0).to(device)
|
136 |
-
images = v2.functional.resize(
|
|
|
137 |
|
138 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
|
|
139 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
140 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
141 |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
142 |
|
143 |
with torch.no_grad():
|
144 |
planes = model.forward_planes(images, input_cameras)
|
145 |
-
mesh_out = model.extract_mesh(
|
|
|
146 |
|
147 |
vertices, faces, vertex_colors = mesh_out
|
148 |
vertices = vertices[:, [1, 2, 0]]
|
@@ -150,115 +120,139 @@ def make3d(images, model, is_flexicubes, infer_config):
|
|
150 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
151 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
152 |
|
|
|
|
|
153 |
return mesh_fpath, mesh_glb_fpath
|
154 |
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
type="pil",
|
|
|
180 |
interactive=False
|
181 |
)
|
182 |
-
with gr.Row():
|
183 |
-
with gr.Group():
|
184 |
-
do_remove_background = gr.Checkbox(
|
185 |
-
label="Remove Background", value=True
|
186 |
-
)
|
187 |
-
sample_seed = gr.Number(
|
188 |
-
value=42, label="Seed Value", precision=0)
|
189 |
-
|
190 |
-
sample_steps = gr.Slider(
|
191 |
-
label="Sample Steps",
|
192 |
-
minimum=30,
|
193 |
-
maximum=75,
|
194 |
-
value=75,
|
195 |
-
step=5
|
196 |
-
)
|
197 |
-
|
198 |
-
with gr.Row():
|
199 |
-
submit = gr.Button(
|
200 |
-
"Generate", elem_id="generate", variant="primary")
|
201 |
-
|
202 |
-
with gr.Row(variant="panel"):
|
203 |
-
gr.Examples(
|
204 |
-
examples=[
|
205 |
-
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
206 |
-
],
|
207 |
-
inputs=[input_image],
|
208 |
-
label="Examples",
|
209 |
-
cache_examples=False,
|
210 |
-
examples_per_page=16
|
211 |
-
)
|
212 |
|
213 |
-
with gr.
|
214 |
-
with gr.
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
label="Output Model (OBJ Format)",
|
227 |
-
interactive=False,
|
228 |
-
)
|
229 |
-
gr.Markdown(
|
230 |
-
"Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
231 |
-
with gr.Tab("GLB"):
|
232 |
-
output_model_glb = gr.Model3D(
|
233 |
-
label="Output Model (GLB Format)",
|
234 |
-
interactive=False,
|
235 |
-
)
|
236 |
-
gr.Markdown(
|
237 |
-
"Note: The model shown here has a darker appearance. Download to get correct results.")
|
238 |
-
|
239 |
-
with gr.Row():
|
240 |
gr.Markdown(
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
launch_demo(config_path)
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import tempfile
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import rembg
|
8 |
+
import spaces
|
9 |
import torch
|
10 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
11 |
from einops import rearrange
|
|
|
16 |
from torchvision.transforms import v2
|
17 |
from tqdm import tqdm
|
18 |
|
19 |
+
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses,
|
20 |
+
get_zero123plus_input_cameras)
|
21 |
+
from src.utils.infer_util import (remove_background, resize_foreground)
|
22 |
from src.utils.mesh_util import save_glb, save_obj
|
23 |
from src.utils.train_util import instantiate_from_config
|
24 |
|
|
|
43 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
44 |
else:
|
45 |
extrinsics = c2ws.flatten(-2)
|
46 |
+
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(
|
47 |
+
0).repeat(M, 1, 1).float().flatten(-2)
|
48 |
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
49 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
50 |
return cameras
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def check_input_image(input_image):
|
54 |
if input_image is None:
|
55 |
raise gr.Error("No image uploaded!")
|
|
|
65 |
return input_image
|
66 |
|
67 |
|
68 |
+
@spaces.GPU
|
69 |
+
def generate_mvs(input_image, sample_steps, sample_seed):
|
70 |
seed_everything(sample_seed)
|
71 |
|
72 |
z123_image = pipeline(
|
73 |
+
input_image, num_inference_steps=sample_steps).images[0]
|
|
|
|
|
74 |
|
75 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
76 |
show_image = torch.from_numpy(show_image)
|
77 |
+
show_image = rearrange(
|
78 |
+
show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
79 |
+
show_image = rearrange(
|
80 |
+
show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
81 |
show_image = Image.fromarray(show_image.numpy())
|
82 |
|
83 |
return z123_image, show_image
|
84 |
|
85 |
|
86 |
+
@spaces.GPU
|
87 |
+
def make3d(images):
|
88 |
+
global model
|
89 |
+
if IS_FLEXICUBES:
|
90 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
91 |
model = model.eval()
|
92 |
|
|
|
94 |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
95 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
96 |
|
97 |
+
input_cameras = get_zero123plus_input_cameras(
|
98 |
+
batch_size=1, radius=4.0).to(device)
|
99 |
+
render_cameras = get_render_cameras(
|
100 |
+
batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
101 |
|
102 |
images = images.unsqueeze(0).to(device)
|
103 |
+
images = v2.functional.resize(
|
104 |
+
images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
105 |
|
106 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
107 |
+
print(mesh_fpath)
|
108 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
109 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
110 |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
111 |
|
112 |
with torch.no_grad():
|
113 |
planes = model.forward_planes(images, input_cameras)
|
114 |
+
mesh_out = model.extract_mesh(
|
115 |
+
planes, use_texture_map=False, **infer_config)
|
116 |
|
117 |
vertices, faces, vertex_colors = mesh_out
|
118 |
vertices = vertices[:, [1, 2, 0]]
|
|
|
120 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
121 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
122 |
|
123 |
+
print(f"Mesh saved to {mesh_fpath}")
|
124 |
+
|
125 |
return mesh_fpath, mesh_glb_fpath
|
126 |
|
127 |
|
128 |
+
# Configuration
|
129 |
+
cuda_path = find_cuda()
|
130 |
+
config_path = 'configs/instant-mesh-large.yaml'
|
131 |
+
config = OmegaConf.load(config_path)
|
132 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
133 |
+
model_config = config.model_config
|
134 |
+
infer_config = config.infer_config
|
135 |
+
|
136 |
+
IS_FLEXICUBES = config_name.startswith('instant-mesh')
|
137 |
+
device = torch.device('cuda')
|
138 |
+
|
139 |
+
# Load diffusion model
|
140 |
+
print('Loading diffusion model ...')
|
141 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
142 |
+
"sudo-ai/zero123plus-v1.2",
|
143 |
+
custom_pipeline="zero123plus",
|
144 |
+
torch_dtype=torch.float16,
|
145 |
+
)
|
146 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
147 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
148 |
+
)
|
149 |
+
|
150 |
+
unet_ckpt_path = hf_hub_download(
|
151 |
+
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
152 |
+
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
153 |
+
pipeline.unet.load_state_dict(state_dict, strict=True)
|
154 |
+
|
155 |
+
pipeline = pipeline.to(device)
|
156 |
+
|
157 |
+
# Load reconstruction model
|
158 |
+
print('Loading reconstruction model ...')
|
159 |
+
model_ckpt_path = hf_hub_download(
|
160 |
+
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
161 |
+
model = instantiate_from_config(model_config)
|
162 |
+
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
163 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith(
|
164 |
+
'lrm_generator.') and 'source_camera' not in k}
|
165 |
+
model.load_state_dict(state_dict, strict=True)
|
166 |
+
|
167 |
+
model = model.to(device)
|
168 |
+
|
169 |
+
print('Loading Finished!')
|
170 |
+
|
171 |
+
# Gradio UI
|
172 |
+
with gr.Blocks() as demo:
|
173 |
+
with gr.Row(variant="panel"):
|
174 |
+
with gr.Column():
|
175 |
+
with gr.Row():
|
176 |
+
input_image = gr.Image(
|
177 |
+
label="Input Image",
|
178 |
+
image_mode="RGBA",
|
179 |
+
sources="upload",
|
180 |
+
type="pil",
|
181 |
+
elem_id="content_image",
|
182 |
+
)
|
183 |
+
processed_image = gr.Image(
|
184 |
+
label="Processed Image",
|
185 |
+
image_mode="RGBA",
|
186 |
+
type="pil",
|
187 |
+
interactive=False
|
188 |
+
)
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Group():
|
191 |
+
do_remove_background = gr.Checkbox(
|
192 |
+
label="Remove Background", value=True)
|
193 |
+
sample_seed = gr.Number(
|
194 |
+
value=42, label="Seed Value", precision=0)
|
195 |
+
sample_steps = gr.Slider(
|
196 |
+
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
|
197 |
+
|
198 |
+
with gr.Row():
|
199 |
+
submit = gr.Button(
|
200 |
+
"Generate", elem_id="generate", variant="primary")
|
201 |
+
|
202 |
+
with gr.Row(variant="panel"):
|
203 |
+
gr.Examples(
|
204 |
+
examples=[os.path.join("examples", img_name)
|
205 |
+
for img_name in sorted(os.listdir("examples"))],
|
206 |
+
inputs=[input_image],
|
207 |
+
label="Examples",
|
208 |
+
cache_examples=False,
|
209 |
+
examples_per_page=16
|
210 |
+
)
|
211 |
+
|
212 |
+
with gr.Column():
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
mv_show_images = gr.Image(
|
216 |
+
label="Generated Multi-views",
|
217 |
type="pil",
|
218 |
+
width=379,
|
219 |
interactive=False
|
220 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Tab("OBJ"):
|
224 |
+
output_model_obj = gr.Model3D(
|
225 |
+
label="Output Model (OBJ Format)",
|
226 |
+
interactive=False,
|
227 |
+
)
|
228 |
+
gr.Markdown(
|
229 |
+
"Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
230 |
+
with gr.Tab("GLB"):
|
231 |
+
output_model_glb = gr.Model3D(
|
232 |
+
label="Output Model (GLB Format)",
|
233 |
+
interactive=False,
|
234 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
gr.Markdown(
|
236 |
+
"Note: The model shown here has a darker appearance. Download to get correct results.")
|
237 |
+
|
238 |
+
with gr.Row():
|
239 |
+
gr.Markdown(
|
240 |
+
'''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
241 |
+
|
242 |
+
mv_images = gr.State()
|
243 |
+
|
244 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
245 |
+
fn=preprocess,
|
246 |
+
inputs=[input_image, do_remove_background],
|
247 |
+
outputs=[processed_image],
|
248 |
+
).success(
|
249 |
+
fn=generate_mvs,
|
250 |
+
inputs=[processed_image, sample_steps, sample_seed],
|
251 |
+
outputs=[mv_images, mv_show_images]
|
252 |
+
).success(
|
253 |
+
fn=make3d,
|
254 |
+
inputs=[mv_images],
|
255 |
+
outputs=[output_model_obj, output_model_glb]
|
256 |
+
)
|
257 |
+
|
258 |
+
demo.launch()
|
|