genrl / agent /dreamer_utils.py
mazpie's picture
Initial commit
2d9a728
raw
history blame contribute delete
No virus
37.3 kB
import re
import numpy as np
import tools.utils as utils
import torch.nn as nn
import torch
import torch.distributions as D
import torch.nn.functional as F
Module = nn.Module
def symlog(x):
return torch.sign(x) * torch.log(torch.abs(x) + 1.0)
def symexp(x):
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0)
def signed_hyperbolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed hyperbolic transform, inverse of signed_parabolic."""
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x
def signed_parabolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed parabolic transform, inverse of signed_hyperbolic."""
z = torch.sqrt(1 + 4 * eps * (eps + 1 + torch.abs(x))) / 2 / eps - 1 / 2 / eps
return torch.sign(x) * (torch.square(z) - 1)
class SampleDist:
def __init__(self, dist: D.Distribution, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
@property
def mean(self):
sample = self._dist.rsample((self._samples,))
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
sample = self._dist.rsample((self._samples,))
logprob = self._dist.log_prob(sample)
return -torch.mean(logprob, 0)
def sample(self):
return self._dist.rsample()
class MSEDist:
def __init__(self, mode, agg="sum"):
self._mode = mode
self._agg = agg
@property
def mean(self):
return self._mode
def mode(self):
return self._mode
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
distance = (self._mode - value) ** 2
if self._agg == "mean":
loss = distance.mean(list(range(len(distance.shape)))[2:])
elif self._agg == "sum":
loss = distance.sum(list(range(len(distance.shape)))[2:])
else:
raise NotImplementedError(self._agg)
return -loss
class SymlogDist:
def __init__(self, mode, dims, dist='mse', agg='sum', tol=1e-8):
self._mode = mode
self._dims = tuple([-x for x in range(1, dims + 1)])
self._dist = dist
self._agg = agg
self._tol = tol
self.batch_shape = mode.shape[:len(mode.shape) - dims]
self.event_shape = mode.shape[len(mode.shape) - dims:]
def mode(self):
return symexp(self._mode)
def mean(self):
return symexp(self._mode)
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
if self._dist == 'mse':
distance = (self._mode - symlog(value)) ** 2
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
elif self._dist == 'abs':
distance = torch.abs(self._mode - symlog(value))
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
else:
raise NotImplementedError(self._dist)
if self._agg == 'mean':
loss = distance.mean(self._dims)
elif self._agg == 'sum':
loss = distance.sum(self._dims)
else:
raise NotImplementedError(self._agg)
return -loss
class TwoHotDist:
def __init__(
self,
logits,
low=-20.0,
high=20.0,
transfwd=symlog,
transbwd=symexp,
):
assert logits.shape[-1] == 255
self.logits = logits
self.probs = torch.softmax(logits, -1)
self.buckets = torch.linspace(low, high, steps=255).to(logits.device)
self.width = (self.buckets[-1] - self.buckets[0]) / 255
self.transfwd = transfwd
self.transbwd = transbwd
@property
def mean(self):
_mean = self.probs * self.buckets
return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True))
@property
def mode(self):
return self.mean
# Inside OneHotCategorical, log_prob is calculated using only max element in targets
def log_prob(self, x):
x = self.transfwd(x)
# x(time, batch, 1)
below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
above = len(self.buckets) - torch.sum(
(self.buckets > x[..., None]).to(torch.int32), dim=-1
)
# this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits.
below = torch.clip(below, 0, len(self.buckets) - 1)
above = torch.clip(above, 0, len(self.buckets) - 1)
equal = below == above
dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
total = dist_to_below + dist_to_above
weight_below = dist_to_above / total
weight_above = dist_to_below / total
target = (
F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None]
+ F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
)
log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
target = target.squeeze(-2)
return (target * log_pred).sum(-1)
def log_prob_target(self, target):
log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
return (target * log_pred).sum(-1)
class OneHotDist(D.OneHotCategorical):
def __init__(self, logits=None, probs=None, unif_mix=0.99):
super().__init__(logits=logits, probs=probs)
probs = super().probs
probs = unif_mix * probs + (1 - unif_mix) * torch.ones_like(probs, device=probs.device) / probs.shape[-1]
super().__init__(probs=probs)
def mode(self):
_mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1])
return _mode.detach() + super().logits - super().logits.detach()
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
class BernoulliDist(D.Bernoulli):
def __init__(self, logits=None, probs=None):
super().__init__(logits=logits, probs=probs)
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
def static_scan_for_lambda_return(fn, inputs, start):
last = start
indices = range(inputs[0].shape[0])
indices = reversed(indices)
flag = True
for index in indices:
inp = lambda x: (_input[x].unsqueeze(0) for _input in inputs)
last = fn(last, *inp(index))
if flag:
outputs = last
flag = False
else:
outputs = torch.cat([last, outputs], dim=0)
return outputs
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
#assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
assert len(reward.shape) == len(value.shape), (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * torch.ones_like(reward, device=reward.device)
dims = list(range(len(reward.shape)))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = reward.permute(dims)
value = value.permute(dims)
pcont = pcont.permute(dims)
if bootstrap is None:
bootstrap = torch.zeros_like(value[-1], device=reward.device)
if len(bootstrap.shape) < len(value.shape):
bootstrap = bootstrap[None]
next_values = torch.cat([value[1:], bootstrap], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan_for_lambda_return(
lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg,
(inputs, pcont), bootstrap)
if axis != 0:
returns = returns.permute(dims)
return returns
def static_scan(fn, inputs, start, reverse=False, unpack=False):
last = start
indices = range(inputs[0].shape[0])
flag = True
for index in indices:
inp = lambda x: (_input[x] for _input in inputs)
if unpack:
last = fn(last, *[inp[index] for inp in inputs])
else:
last = fn(last, inp(index))
if flag:
if type(last) == type({}):
outputs = {key: [value] for key, value in last.items()}
else:
outputs = []
for _last in last:
if type(_last) == type({}):
outputs.append({key: [value] for key, value in _last.items()})
else:
outputs.append([_last])
flag = False
else:
if type(last) == type({}):
for key in last.keys():
outputs[key].append(last[key])
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key].append(last[j][key])
else:
outputs[j].append(last[j])
# Stack everything at the end
if type(last) == type({}):
for key in last.keys():
outputs[key] = torch.stack(outputs[key], dim=0)
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key] = torch.stack(outputs[j][key], dim=0)
else:
outputs[j] = torch.stack(outputs[j], dim=0)
if type(last) == type({}):
outputs = [outputs]
return outputs
class EnsembleRSSM(Module):
def __init__(
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
act='SiLU', norm='none', std_act='softplus', min_std=0.1, action_dim=None, embed_dim=1536, device='cuda',
single_obs_posterior=False, cell_input='stoch', cell_type='gru',):
super().__init__()
assert action_dim is not None
self.device = device
self._embed_dim = embed_dim
self._action_dim = action_dim
self._ensemble = ensemble
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._discrete = discrete
self._act = get_act(act)
self._norm = norm
self._std_act = std_act
self._min_std = min_std
self._cell_type = cell_type
self.cell_input = cell_input
if cell_type == 'gru':
self._cell = GRUCell(self._hidden, self._deter, norm=True, device=self.device)
else:
raise NotImplementedError(f"{cell_type} not implemented")
self.single_obs_posterior = single_obs_posterior
if discrete:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, stoch*discrete) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, stoch*discrete)
else:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, 2*stoch) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, 2*stoch)
# Layer that projects (stoch, input) to cell_state space
cell_state_input_size = getattr(self, f'get_{self.cell_input}_size')()
self._img_in = nn.Sequential(nn.Linear(cell_state_input_size + action_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
# Layer that project deter -> hidden [before projecting hidden -> stoch]
self._ensemble_img_out = nn.ModuleList([ nn.Sequential(nn.Linear(self.get_deter_size(), hidden, bias=norm != 'none'), NormLayer(norm, hidden)) for _ in range(ensemble)])
if self.single_obs_posterior:
self._obs_out = nn.Sequential(nn.Linear(embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
else:
self._obs_out = nn.Sequential(nn.Linear(deter + embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
def initial(self, batch_size):
if self._discrete:
state = dict(
logit=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
stoch=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
else:
state = dict(
mean=torch.zeros([batch_size, self._stoch], device=self.device),
std=torch.zeros([batch_size, self._stoch], device=self.device),
stoch=torch.zeros([batch_size, self._stoch], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
return state
def observe(self, embed, action, is_first, state=None):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None: state = self.initial(action.shape[0])
post, prior = static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(swap(action), swap(embed), swap(is_first)), (state, state))
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
def imagine(self, action, state=None, sample=True):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(action.shape[0])
assert isinstance(state, dict), state
action = swap(action)
prior = static_scan(self.img_step, [action, float(sample) + torch.zeros(action.shape[0])], state, unpack=True)[0]
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_stoch_size(self,):
if self._discrete:
return self._stoch * self._discrete
else:
return self._stoch
def get_deter_size(self,):
return self._cell.state_size
def get_feat_size(self,):
return self.get_deter_size() + self.get_stoch_size()
def get_stoch(self, state):
stoch = state['stoch']
if self._discrete:
shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete]
stoch = stoch.reshape(shape)
return stoch
def get_deter(self, state):
return state['deter']
def get_feat(self, state):
deter = self.get_deter(state)
stoch = self.get_stoch(state)
return torch.cat([stoch, deter], -1)
def get_dist(self, state, ensemble=False):
if ensemble:
state = self._suff_stats_ensemble(state['deter'])
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(logit.float()), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(mean, std), 1)
dist.sample = dist.rsample
return dist
def get_unif_dist(self, state):
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(torch.ones_like(logit, device=logit.device)), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(torch.zeros_like(mean, device=mean.device), torch.ones_like(std, device=std.device)), 1)
dist.sample = dist.rsample
return dist
def obs_step(self, prev_state, prev_action, embed, is_first, should_sample=True):
if is_first.any():
prev_state = { k: torch.einsum('b,b...->b...', 1.0 - is_first.float(), x) for k, x in prev_state.items() }
prev_action = torch.einsum('b,b...->b...', 1.0 - is_first.float(), prev_action)
#
prior = self.img_step(prev_state, prev_action, should_sample)
stoch, stats = self.get_post_stoch(embed, prior, should_sample)
post = {'stoch': stoch, 'deter': prior['deter'], **stats}
return post, prior
def get_post_stoch(self, embed, prior, should_sample=True):
if self.single_obs_posterior:
x = embed
else:
x = torch.cat([prior['deter'], embed], -1)
x = self._obs_out(x)
x = self._act(x)
bs = list(x.shape[:-1])
x = x.reshape([-1, x.shape[-1]])
stats = self._suff_stats_layer('_obs_dist', x)
stats = { k: v.reshape( bs + list(v.shape[1:])) for k, v in stats.items()}
dist = self.get_dist(stats)
stoch = dist.sample() if should_sample else dist.mode()
return stoch, stats
def img_step(self, prev_state, prev_action, sample=True,):
prev_state_input = getattr(self, f'get_{self.cell_input}')(prev_state)
x = torch.cat([prev_state_input, prev_action], -1)
x = self._img_in(x)
x = self._act(x)
deter = prev_state['deter']
if self._cell_type == 'gru':
x, deter = self._cell(x, [deter])
temp_state = {'deter' : deter[0] }
else:
raise NotImplementedError(f"no {self._cell_type} cell method")
deter = deter[0] # It's wrapped in a list.
stoch, stats = self.get_stoch_stats_from_deter_state(temp_state, sample)
prior = {'stoch': stoch, 'deter': deter, **stats}
return prior
def get_stoch_stats_from_deter_state(self, temp_state, sample=True):
stats = self._suff_stats_ensemble(self.get_deter(temp_state))
index = torch.randint(0, self._ensemble, ())
stats = {k: v[index] for k, v in stats.items()}
dist = self.get_dist(stats)
if sample:
stoch = dist.sample()
else:
try:
stoch = dist.mode()
except:
stoch = dist.mean
return stoch, stats
def _suff_stats_ensemble(self, inp):
bs = list(inp.shape[:-1])
inp = inp.reshape([-1, inp.shape[-1]])
stats = []
for k in range(self._ensemble):
x = self._ensemble_img_out[k](inp)
x = self._act(x)
stats.append(self._suff_stats_layer('_ensemble_img_dist', x, k=k))
stats = {
k: torch.stack([x[k] for x in stats], 0)
for k, v in stats[0].items()}
stats = {
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
for k, v in stats.items()}
return stats
def _suff_stats_layer(self, name, x, k=None):
layer = getattr(self, name)
if k is not None:
layer = layer[k]
x = layer(x)
if self._discrete:
logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete])
return {'logit': logit}
else:
mean, std = torch.chunk(x, 2, -1)
std = {
'softplus': lambda: F.softplus(std),
'sigmoid': lambda: torch.sigmoid(std),
'sigmoid2': lambda: 2 * torch.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {'mean': mean, 'std': std}
def vq_loss(self, post, prior, balance):
dim_repr = prior['output'].shape[-1]
# Vectors and codes are the same, but vectors have gradients
dyn_loss = balance * F.mse_loss(prior['output'], post['vectors'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['vectors'])
dyn_loss += balance * F.mse_loss(prior['output'], post['codes'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['codes'])
dyn_loss /= 2
vq_loss = 0.25 * F.mse_loss(post['output'], post['codes'].detach()) + F.mse_loss(post['output'].detach(), post['codes'])
loss = vq_loss + dyn_loss
return loss * dim_repr, dyn_loss * dim_repr
def kl_loss(self, post, prior, forward, balance, free, free_avg,):
kld = D.kl_divergence
sg = lambda x: {k: v.detach() for k, v in x.items()}
lhs, rhs = (prior, post) if forward else (post, prior)
mix = balance if forward else (1 - balance)
dtype = post['stoch'].dtype
device = post['stoch'].device
free_tensor = torch.tensor([free], dtype=dtype, device=device)
if balance == 0.5:
value = kld(self.get_dist(lhs), self.get_dist(rhs))
loss = torch.maximum(value, free_tensor).mean()
else:
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
if free_avg:
loss_lhs = torch.maximum(value_lhs.mean(), free_tensor)
loss_rhs = torch.maximum(value_rhs.mean(), free_tensor)
else:
loss_lhs = torch.maximum(value_lhs, free_tensor).mean()
loss_rhs = torch.maximum(value_rhs, free_tensor).mean()
loss = mix * loss_lhs + (1 - mix) * loss_rhs
return loss, value
class Encoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], symlog_inputs=False,):
super().__init__()
self.shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Encoder CNN inputs:', list(self.cnn_keys))
print('Encoder MLP inputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self._symlog_inputs = symlog_inputs
if len(self.cnn_keys) > 0:
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 3
else:
prev_depth = 2 ** (i-1) * self._cnn_depth
depth = 2 ** i * self._cnn_depth
self._conv_model.append(nn.Conv2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm,depth))
self._conv_model.append(self._act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = np.sum([shapes[k] for k in self.mlp_keys])
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=norm != 'none'))
self._mlp_model.append(NormLayer(norm, width))
self._mlp_model.append(self._act)
if len(self._mlp_model) == 0:
self._mlp_model.append(nn.Identity())
self._mlp_model = nn.Sequential(*self._mlp_model)
def forward(self, data):
key, shape = list(self.shapes.items())[0]
batch_dims = data[key].shape[:-len(shape)]
data = {
k: v.reshape((-1,) + tuple(v.shape)[len(batch_dims):])
for k, v in data.items()}
outputs = []
if self.cnn_keys:
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
if self.mlp_keys:
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
output = torch.cat(outputs, -1)
return output.reshape(batch_dims + output.shape[1:])
def _cnn(self, data):
x = torch.cat(list(data.values()), -1)
x = self._conv_model(x)
return x.reshape(tuple(x.shape[:-3]) + (-1,))
def _mlp(self, data):
x = torch.cat(list(data.values()), -1)
if self._symlog_inputs:
x = symlog(x)
x = self._mlp_model(x)
return x
class Decoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], embed_dim=1024, mlp_dist='mse', image_dist='mse'):
super().__init__()
self._embed_dim = embed_dim
self._shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Decoder CNN outputs:', list(self.cnn_keys))
print('Decoder MLP outputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self.channels = {k: self._shapes[k][0] for k in self.cnn_keys}
self._mlp_dist = mlp_dist
self._image_dist = image_dist
if len(self.cnn_keys) > 0:
self._conv_in = nn.Sequential(nn.Linear(embed_dim, 32*self._cnn_depth))
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 32*self._cnn_depth
else:
prev_depth = 2 ** (len(self._cnn_kernels) - (i - 1) - 2) * self._cnn_depth
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
act, norm = self._act, self._norm
# Last layer is dist layer
if i == len(self._cnn_kernels) - 1:
depth, act, norm = sum(self.channels.values()), nn.Identity(), 'none'
self._conv_model.append(nn.ConvTranspose2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm, depth))
self._conv_model.append(act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = embed_dim
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=self._norm != 'none'))
self._mlp_model.append(NormLayer(self._norm, width))
self._mlp_model.append(self._act)
self._mlp_model = nn.Sequential(*self._mlp_model)
for key, shape in { k : shapes[k] for k in self.mlp_keys }.items():
self.add_module(f'dense_{key}', DistLayer(width, shape, dist=self._mlp_dist))
def forward(self, features):
outputs = {}
if self.cnn_keys:
outputs.update(self._cnn(features))
if self.mlp_keys:
outputs.update(self._mlp(features))
return outputs
def _cnn(self, features):
x = self._conv_in(features)
x = x.reshape([-1, 32 * self._cnn_depth, 1, 1,])
x = self._conv_model(x)
x = x.reshape(list(features.shape[:-1]) + list(x.shape[1:]))
if len(x.shape) == 5:
means = torch.split(x, list(self.channels.values()), 2)
else:
means = torch.split(x, list(self.channels.values()), 1)
image_dist = dict(mse=lambda x : MSEDist(x), normal_unit_std=lambda x : D.Independent(D.Normal(x, 1.0), 3))[self._image_dist]
dists = { key: image_dist(mean) for (key, shape), mean in zip(self.channels.items(), means)}
return dists
def _mlp(self, features):
shapes = {k: self._shapes[k] for k in self.mlp_keys}
x = features
x = self._mlp_model(x)
dists = {}
for key, shape in shapes.items():
dists[key] = getattr(self, f'dense_{key}')(x)
return dists
class MLP(Module):
def __init__(self, in_shape, shape, layers, units, act='SiLU', norm='none', **out):
super().__init__()
self._in_shape = in_shape
if out['dist'] == 'twohot':
shape = 255
self._shape = (shape,) if isinstance(shape, int) else shape
self._layers = layers
self._units = units
self._norm = norm
self._act = get_act(act)
self._out = out
last_units = in_shape
for index in range(self._layers):
self.add_module(f'dense{index}', nn.Linear(last_units, units, bias=norm != 'none'))
self.add_module(f'norm{index}', NormLayer(norm, units))
last_units = units
self._out = DistLayer(units, shape, **out)
def forward(self, features):
x = features
x = x.reshape([-1, x.shape[-1]])
for index in range(self._layers):
x = getattr(self, f'dense{index}')(x)
x = getattr(self, f'norm{index}')(x)
x = self._act(x)
x = x.reshape(list(features.shape[:-1]) + [x.shape[-1]])
return self._out(x)
class GRUCell(Module):
def __init__(self, inp_size, size, norm=False, act='Tanh', update_bias=-1, device='cuda', **kwargs):
super().__init__()
self._inp_size = inp_size
self._size = size
self._act = get_act(act)
self._norm = norm
self._update_bias = update_bias
self.device = device
self._layer = nn.Linear(inp_size + size, 3 * size, bias=(not norm), **kwargs)
if norm:
self._norm = nn.LayerNorm(3*size)
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
return torch.zeros((batch_size), self._size, device=self.device)
@property
def state_size(self):
return self._size
def forward(self, inputs, deter_state):
"""
inputs : non-linear combination of previous stoch and action
deter_state : prev hidden state of the cell
"""
deter_state = deter_state[0] # State is wrapped in a list.
parts = self._layer(torch.cat([inputs, deter_state], -1))
if self._norm:
parts = self._norm(parts)
reset, cand, update = torch.chunk(parts, 3, -1)
reset = torch.sigmoid(reset)
cand = self._act(reset * cand)
update = torch.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * deter_state
return output, [output]
class DistLayer(Module):
def __init__(
self, in_dim, shape, dist='mse', min_std=0.1, max_std=1.0, init_std=0.0, bias=True):
super().__init__()
self._in_dim = in_dim
self._shape = shape if type(shape) in [list,tuple] else [shape]
self._dist = dist
self._min_std = min_std
self._init_std = init_std
self._max_std = max_std
self._out = nn.Linear(in_dim, int(np.prod(shape)) , bias=bias)
if dist in ('normal', 'tanh_normal', 'trunc_normal'):
self._std = nn.Linear(in_dim, int(np.prod(shape)) )
def forward(self, inputs):
out = self._out(inputs)
out = out.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
std = self._std(inputs)
std = std.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist == 'mse':
return MSEDist(out,)
if self._dist == 'normal_unit_std':
dist = D.Normal(out, 1.0)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'normal':
mean = torch.tanh(out)
std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std
dist = D.Normal(mean, std)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'binary':
out = torch.sigmoid(out)
dist = BernoulliDist(out)
return D.Independent(dist, len(self._shape))
if self._dist == 'tanh_normal':
mean = 5 * torch.tanh(out / 5)
std = F.softplus(std + self._init_std) + self._min_std
dist = utils.SquashedNormal(mean, std)
dist = D.Independent(dist, len(self._shape))
return SampleDist(dist)
if self._dist == 'trunc_normal':
mean = torch.tanh(out)
std = 2 * torch.sigmoid((std + self._init_std) / 2) + self._min_std
dist = utils.TruncatedNormal(mean, std)
return D.Independent(dist, 1)
if self._dist == 'onehot':
return OneHotDist(out.float())
if self._dist == 'twohot':
return TwoHotDist(out.float())
if self._dist == 'symlog_mse':
return SymlogDist(out, len(self._shape), 'mse')
raise NotImplementedError(self._dist)
class NormLayer(Module):
def __init__(self, name, dim=None):
super().__init__()
if name == 'none':
self._layer = None
elif name == 'layer':
assert dim != None
self._layer = nn.LayerNorm(dim)
else:
raise NotImplementedError(name)
def forward(self, features):
if self._layer is None:
return features
return self._layer(features)
def get_act(name):
if name == 'none':
return nn.Identity()
elif hasattr(nn, name):
return getattr(nn, name)()
else:
raise NotImplementedError(name)
class Optimizer:
def __init__(
self, name, parameters, lr, eps=1e-4, clip=None, wd=None,
opt='adam', wd_pattern=r'.*', use_amp=False):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
'adam': lambda: torch.optim.Adam(parameters, lr, eps=eps),
'nadam': lambda: torch.optim.Nadam(parameters, lr, eps=eps),
'adamax': lambda: torch.optim.Adamax(parameters, lr, eps=eps),
'sgd': lambda: torch.optim.SGD(parameters, lr),
'momentum': lambda: torch.optim.SGD(lr, momentum=0.9),
}[opt]()
self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
self._once = True
def __call__(self, loss, params):
params = list(params)
assert len(loss.shape) == 0 or (len(loss.shape) == 1 and loss.shape[0] == 1), (self._name, loss.shape)
metrics = {}
# Count parameters.
if self._once:
count = sum(p.numel() for p in params if p.requires_grad)
print(f'Found {count} {self._name} parameters.')
self._once = False
# Check loss.
metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy()
# Compute scaled gradient.
self._scaler.scale(loss).backward()
self._scaler.unscale_(self._opt)
# Gradient clipping.
if self._clip:
norm = torch.nn.utils.clip_grad_norm_(params, self._clip)
metrics[f'{self._name}_grad_norm'] = norm.item()
# Weight decay.
if self._wd:
self._apply_weight_decay(params)
# # Apply gradients.
self._scaler.step(self._opt)
self._scaler.update()
self._opt.zero_grad()
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = (self._wd_pattern != r'.*')
if nontrivial:
raise NotImplementedError('Non trivial weight decay')
else:
for var in varibs:
var.data = (1 - self._wd) * var.data
class StreamNorm:
def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8, device='cuda'):
# Momentum of 0 normalizes only based on the current batch.
# Momentum of 1 disables normalization.
self.device = device
self._shape = tuple(shape)
self._momentum = momentum
self._scale = scale
self._eps = eps
self.mag = None # torch.ones(shape).to(self.device)
self.step = 0
self.mean = None # torch.zeros(shape).to(self.device)
self.square_mean = None # torch.zeros(shape).to(self.device)
def reset(self):
self.step = 0
self.mag = None # torch.ones_like(self.mag).to(self.device)
self.mean = None # torch.zeros_like(self.mean).to(self.device)
self.square_mean = None # torch.zeros_like(self.square_mean).to(self.device)
def __call__(self, inputs):
metrics = {}
self.update(inputs)
metrics['mean'] = inputs.mean()
metrics['std'] = inputs.std()
outputs = self.transform(inputs)
metrics['normed_mean'] = outputs.mean()
metrics['normed_std'] = outputs.std()
return outputs, metrics
def update(self, inputs):
self.step += 1
batch = inputs.reshape((-1,) + self._shape)
mag = torch.abs(batch).mean(0)
if self.mag is not None:
self.mag.data = self._momentum * self.mag.data + (1 - self._momentum) * mag
else:
self.mag = mag.clone().detach()
mean = torch.mean(batch)
if self.mean is not None:
self.mean.data = self._momentum * self.mean.data + (1 - self._momentum) * mean
else:
self.mean = mean.clone().detach()
square_mean = torch.mean(batch * batch)
if self.square_mean is not None:
self.square_mean.data = self._momentum * self.square_mean.data + (1 - self._momentum) * square_mean
else:
self.square_mean = square_mean.clone().detach()
def transform(self, inputs):
if self._momentum == 1:
return inputs
values = inputs.reshape((-1,) + self._shape)
values /= self.mag[None] + self._eps
values *= self._scale
return values.reshape(inputs.shape)
def corrected_mean_var_std(self,):
corr = 1 # 1 - self._momentum ** self.step # NOTE: this led to exploding values for first few iterations
corr_mean = self.mean / corr
corr_var = (self.square_mean / corr) - self.mean ** 2
corr_std = torch.sqrt(torch.maximum(corr_var, torch.zeros_like(corr_var, device=self.device)) + self._eps)
return corr_mean, corr_var, corr_std
class RequiresGrad:
def __init__(self, model):
self._model = model
def __enter__(self):
self._model.requires_grad_(requires_grad=True)
def __exit__(self, *args):
self._model.requires_grad_(requires_grad=False)
class RewardEMA:
"""running mean and std"""
def __init__(self, device, alpha=1e-2):
self.device = device
self.alpha = alpha
self.range = torch.tensor([0.05, 0.95]).to(device)
def __call__(self, x, ema_vals):
flat_x = torch.flatten(x.detach())
x_quantile = torch.quantile(input=flat_x, q=self.range)
# this should be in-place operation
ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals
scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0)
offset = ema_vals[0]
return offset.detach(), scale.detach()
class ImgChLayerNorm(nn.Module):
def __init__(self, ch, eps=1e-03):
super(ImgChLayerNorm, self).__init__()
self.norm = torch.nn.LayerNorm(ch, eps=eps)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
return x