Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import datetime | |
import numpy as np | |
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import json | |
import os | |
from functools import partial | |
from pathlib import Path | |
from timm.models import create_model | |
from optim_factory import ( | |
create_optimizer, | |
get_parameter_groups, | |
) | |
from datasets import build_multi_pretraining_dataset | |
from single_modality.engines.engine_for_pretraining import train_one_epoch | |
from utils import NativeScalerWithGradNormCount as NativeScaler | |
from utils import multiple_pretrain_samples_collate | |
import utils | |
from models import * | |
def get_args(): | |
parser = argparse.ArgumentParser('VideoMAE pre-training script', add_help=False) | |
parser.add_argument('--batch_size', default=64, type=int) | |
parser.add_argument('--epochs', default=800, type=int) | |
parser.add_argument('--update_freq', default=1, type=int) | |
parser.add_argument('--save_ckpt_freq', default=50, type=int) | |
parser.add_argument('--steps_per_print', default=1, type=int) | |
parser.add_argument('--use_ceph_checkpoint', action='store_true', | |
help="whether use ceph to save and load checkpoint, may be some bug now") | |
parser.set_defaults(use_ceph_checkpoint=False) | |
parser.add_argument('--ceph_checkpoint_prefix', default='', type=str, | |
help='prefix for checkpoint in ceph') | |
parser.add_argument('--ckpt_path_split', default='/exp/', type=str, | |
help='string for splitting the ckpt_path') | |
# Model parameters | |
parser.add_argument('--model', default='pretrain_videomae_base_patch16_224', type=str, metavar='MODEL', | |
help='Name of model to train') | |
parser.add_argument('--decoder_depth', default=4, type=int, | |
help='depth of decoder') | |
parser.add_argument('--mask_type', default='tube', choices=['random', 'tube', 'attention'], | |
type=str, help='masked strategy of video tokens/patches') | |
parser.add_argument('--mask_ratio', default=0.75, type=float, | |
help='ratio of the visual tokens/patches need be masked') | |
parser.add_argument('--input_size', default=224, type=int, | |
help='videos input size for backbone') | |
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT', | |
help='Drop path rate (default: 0.0)') | |
parser.add_argument('--normlize_target', default=True, type=bool, | |
help='normalized the target patch pixels') | |
parser.add_argument('--tubelet_size', default=1, type=int, | |
help='temporal tube size for the patch embedding') | |
parser.add_argument('--layer_scale_init_value', default=1e-5, type=float, | |
help="0.1 for base, 1e-5 for large. set 0 to disable LayerScale") | |
parser.add_argument('--layerscale_no_force_fp32', action='store_true', | |
help="Not force fp32 for LayerScale") | |
parser.set_defaults(layerscale_no_force_fp32=False) | |
parser.add_argument('--sep_pos_embed', action='store_true', | |
help="whether use seperable position embedding") | |
parser.set_defaults(sep_pos_embed=False) | |
# CLIP decpder parameters | |
parser.add_argument('--clip_teacher', default='internvl_clip_6b', type=str, | |
help='Name of CLIP teacher') | |
parser.add_argument('--clip_input_resolution', default=224, type=int, | |
help='input resolution of CLIP decoder') | |
parser.add_argument('--clip_teacher_embed_dim', default=3200, type=int, | |
help='output dimension of CLIP decoder in the intermediate layers') | |
parser.add_argument('--clip_teacher_final_dim', default=768, type=int, | |
help='output dimension of CLIP decoder in the final layer, 0 means w/o alignment') | |
parser.add_argument('--clip_loss_ratio', default=[1, 1], type=float, nargs='+', metavar='BETA', | |
help='Loss ratio for middle features and final features (default: [1, 0.5])') | |
parser.add_argument('--clip_norm_type', default='l2', type=str, | |
help='type of feature normalization') | |
parser.add_argument('--clip_return_attn', action='store_true', | |
help="whether return CLIP attention") | |
parser.set_defaults(clip_return_attn=False) | |
parser.add_argument('--clip_return_layer', default=1, type=int, | |
help='number of CLIP return layers') | |
parser.add_argument('--clip_teacher_return_interval', default=1, type=float, | |
help='interval of CLIP teacher return layers') | |
parser.add_argument('--clip_student_return_interval', default=1, type=float, | |
help='interval of CLIP student return layers') | |
# MAE decoder parameters | |
parser.add_argument('--mae_teacher', default='clip_b16', type=str, | |
help='Name of MAE teacher') | |
parser.add_argument('--mae_input_resolution', default=224, type=int, | |
help='input resolution of MAE decoder') | |
parser.add_argument('--mae_tubelet_size', default=2, type=int, | |
help='tubelet size of MAE decoder') | |
parser.add_argument('--mae_teacher_embed_dim', default=1408, type=int, | |
help='output dimension of MAE decoder') | |
parser.add_argument('--mae_norm_type', default='l2', type=str, | |
help='type of feature normalization') | |
parser.add_argument('--mae_loss_ratio', default=1., type=float, | |
help='ratio for MAE loss') | |
parser.add_argument('--mae_return_layer', default=1, type=int, | |
help='number of MAE return layers') | |
parser.add_argument('--mae_teacher_return_interval', default=1, type=float, | |
help='interval of MAE teacher return layers') | |
parser.add_argument('--mae_student_return_interval', default=1, type=float, | |
help='interval of MAE student return layers') | |
# Optimizer parameters | |
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', | |
help='Optimizer (default: "adamw"') | |
parser.add_argument('--opt_eps', default=1e-6, type=float, metavar='EPSILON', | |
help='Optimizer Epsilon (default: 1e-6)') | |
parser.add_argument('--opt_betas', default=[0.9, 0.98], type=float, nargs='+', metavar='BETA', | |
help='Optimizer Betas (default: [0.9, 0.98])') | |
parser.add_argument('--clip_grad', type=float, default=3.0, metavar='NORM', | |
help='Clip gradient norm (default: 3.0)') | |
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', | |
help='SGD momentum (default: 0.9)') | |
parser.add_argument('--weight_decay', type=float, default=0.05, | |
help='weight decay (default: 0.05)') | |
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the | |
weight decay. We use a cosine schedule for WD. | |
(Set the same value with args.weight_decay to keep weight decay no change)""") | |
parser.add_argument('--lr', type=float, default=1.5e-4, metavar='LR', | |
help='learning rate (default: 1.5e-4)') | |
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', | |
help='warmup learning rate (default: 1e-6)') | |
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', | |
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') | |
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--use_checkpoint', action='store_true') | |
parser.set_defaults(use_checkpoint=False) | |
parser.add_argument('--checkpoint_num', type=int, default=0) | |
# Augmentation parameters | |
parser.add_argument('--num_sample', type=int, default=1, help='Repeated_aug (default: 1)') | |
parser.add_argument('--color_jitter', type=float, default=0.0, metavar='PCT', | |
help='Color jitter factor (default: 0.0)') | |
parser.add_argument('--train_interpolation', type=str, default='bicubic', | |
help='Training interpolation (random, bilinear, bicubic default: "bicubic")') | |
parser.add_argument('--flip', default=False, action='store_true', | |
help='whether flip the video in pretraining') | |
# Dataset parameters | |
parser.add_argument('--prefix', default='', type=str, help='prefix for data') | |
parser.add_argument('--split', default=' ', type=str, help='split for metadata') | |
parser.add_argument('--data_path', default='you_data_path', type=str, | |
help='dataset path') | |
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true') | |
parser.add_argument('--use_decord', action='store_true', | |
help='whether use decord to load video, otherwise load image') | |
parser.add_argument('--no_use_decord', action='store_false', dest='use_decord') | |
parser.set_defaults(use_decord=True) | |
parser.add_argument('--num_segments', type=int, default=1) | |
parser.add_argument('--num_frames', type=int, default=16) | |
parser.add_argument('--sampling_rate', type=int, default=4) | |
parser.add_argument('--output_dir', default='', | |
help='path where to save, empty for no saving') | |
parser.add_argument('--log_dir', default=None, | |
help='path where to tensorboard log') | |
parser.add_argument('--device', default='cuda', | |
help='device to use for training / testing') | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--resume', default='', help='resume from checkpoint') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') | |
parser.set_defaults(auto_resume=True) | |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', | |
help='start epoch') | |
parser.add_argument('--test_best', action='store_true', | |
help='Whether test the best model') | |
parser.add_argument('--num_workers', default=10, type=int) | |
parser.add_argument('--pin_mem', action='store_true', | |
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') | |
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', | |
help='') | |
parser.set_defaults(pin_mem=True) | |
# distributed training parameters | |
parser.add_argument('--world_size', default=1, type=int, | |
help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_on_itp', action='store_true') | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
parser.add_argument('--enable_deepspeed', | |
action='store_true', default=False) | |
parser.add_argument('--bf16', default=False, action='store_true') | |
parser.add_argument('--zero_stage', default=0, type=int, | |
help='ZeRO optimizer stage (default: 0)') | |
known_args, _ = parser.parse_known_args() | |
if known_args.enable_deepspeed: | |
try: | |
import deepspeed | |
parser = deepspeed.add_config_arguments(parser) | |
ds_init = deepspeed.initialize | |
except: | |
print("Please install DeepSpeed") | |
exit(0) | |
else: | |
ds_init = None | |
return parser.parse_args(), ds_init | |
def get_model(args): | |
print(f"Creating model: {args.model}") | |
model = create_model( | |
args.model, | |
pretrained=False, | |
drop_path_rate=args.drop_path, | |
num_frames=args.num_frames//(args.mae_tubelet_size//args.tubelet_size), | |
tubelet_size=args.tubelet_size, | |
sep_pos_embed=args.sep_pos_embed, | |
use_checkpoint=args.use_checkpoint, | |
checkpoint_num=args.checkpoint_num, | |
init_values=args.layer_scale_init_value, | |
layerscale_no_force_fp32=args.layerscale_no_force_fp32, | |
clip_teacher_embed_dim=args.clip_teacher_embed_dim, | |
clip_teacher_final_dim=args.clip_teacher_final_dim, | |
clip_norm_type=args.clip_norm_type, | |
clip_return_layer=args.clip_return_layer, | |
clip_student_return_interval=args.clip_student_return_interval, | |
mae_teacher_embed_dim=args.mae_teacher_embed_dim, | |
mae_norm_type=args.mae_norm_type, | |
mae_return_layer=args.mae_return_layer, | |
mae_student_return_interval=args.mae_student_return_interval, | |
) | |
return model | |
def main(args, ds_init): | |
utils.init_distributed_mode(args) | |
if ds_init is not None: | |
utils.create_internvideo2_ds_config(args) | |
print(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
cudnn.benchmark = True | |
model = get_model(args) | |
patch_size = model.patch_embed.patch_size | |
print("Patch size = %s" % str(patch_size)) | |
print("Tubelet size = %s" % str(args.tubelet_size)) | |
args.window_size = (args.num_frames // args.tubelet_size, args.input_size // patch_size[0], args.input_size // patch_size[1]) | |
args.patch_size = patch_size | |
# CLIP teacher model | |
print(f'CLIP Teacher model: {args.clip_teacher}') | |
clip_teacher_model = eval(args.clip_teacher)( | |
img_size=args.clip_input_resolution, | |
clip_norm_type=args.clip_norm_type, | |
return_attn=args.clip_return_attn, | |
clip_return_layer=args.clip_return_layer, | |
clip_return_interval=args.clip_teacher_return_interval | |
) | |
# MAE teacher model | |
print(f'MAE Teacher model: {args.mae_teacher}') | |
mae_teacher_model = eval(args.mae_teacher)( | |
img_size=args.mae_input_resolution, | |
tubelet_size=args.mae_tubelet_size, | |
mae_norm_type=args.mae_norm_type, | |
mae_return_layer=args.mae_return_layer, | |
mae_return_interval=args.mae_teacher_return_interval | |
) | |
# get dataset | |
dataset_train = build_multi_pretraining_dataset(args) | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
sampler_rank = global_rank | |
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks | |
sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True) | |
print("Sampler_train = %s" % str(sampler_train)) | |
if global_rank == 0 and args.log_dir is not None: | |
os.makedirs(args.log_dir, exist_ok=True) | |
log_writer = utils.TensorboardLogger(log_dir=args.log_dir) | |
else: | |
log_writer = None | |
if args.num_sample > 1: | |
collate_func = partial(multiple_pretrain_samples_collate, fold=False) | |
else: | |
collate_func = None | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset_train, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=True, | |
collate_fn=collate_func, | |
worker_init_fn=utils.seed_worker, | |
persistent_workers=True | |
) | |
model.to(device) | |
clip_teacher_model.to(device) | |
mae_teacher_model.to(device) | |
model_without_ddp = model | |
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print("Model = %s" % str(model_without_ddp)) | |
print('number of params: {} M'.format(n_parameters / 1e6)) | |
total_batch_size = args.batch_size * utils.get_world_size() | |
args.lr = args.lr * total_batch_size * args.num_sample / 256 | |
args.min_lr = args.min_lr * total_batch_size * args.num_sample / 256 | |
args.warmup_lr = args.warmup_lr * total_batch_size * args.num_sample / 256 | |
print("LR = %.8f" % args.lr) | |
print("Batch size = %d" % total_batch_size) | |
print("Repeated sample = %d" % args.num_sample) | |
print("Number of training steps = %d" % num_training_steps_per_epoch) | |
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) | |
skip_weight_decay_list = model.no_weight_decay() | |
print("Skip weight decay list: ", skip_weight_decay_list) | |
if args.enable_deepspeed: | |
loss_scaler = None | |
optimizer_params = get_parameter_groups( | |
model, args.weight_decay, skip_weight_decay_list | |
) | |
model, optimizer, _, _ = ds_init( | |
args=args, model=model, model_parameters=optimizer_params, | |
dist_init_required=not args.distributed, | |
) | |
print("model.gradient_accumulation_steps() = %d" % | |
model.gradient_accumulation_steps()) | |
assert model.gradient_accumulation_steps() == args.update_freq | |
else: | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False) | |
model_without_ddp = model.module | |
optimizer = create_optimizer(args, model_without_ddp) | |
loss_scaler = NativeScaler() | |
print("Use step level LR & WD scheduler!") | |
lr_schedule_values = utils.cosine_scheduler( | |
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, | |
) | |
if args.weight_decay_end is None: | |
args.weight_decay_end = args.weight_decay | |
wd_schedule_values = utils.cosine_scheduler(args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) | |
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) | |
ceph_args = { | |
'use_ceph_checkpoint': args.use_ceph_checkpoint, | |
'ceph_checkpoint_prefix': args.ceph_checkpoint_prefix, | |
'ckpt_path_split': args.ckpt_path_split, | |
'local_rank': args.gpu, | |
} | |
if ceph_args['use_ceph_checkpoint']: | |
print("Will automatically upload model on ceph") | |
assert ceph_args['ceph_checkpoint_prefix'] != '', "Should set prefix for ceph checkpoint!" | |
utils.auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, | |
ceph_args=ceph_args, | |
) | |
torch.cuda.empty_cache() | |
print(f"Start training for {args.epochs} epochs") | |
print(f"Use bf16 {args.bf16}") | |
print(f"Mask ratio: {args.mask_ratio}") | |
print(f"Mask typr: {args.mask_type}") | |
distill_final_features = args.clip_teacher_final_dim > 0 | |
print(f"Distill final (AttnPoll) features of teacher: {distill_final_features}") | |
print(f"Loss ratio: {args.clip_loss_ratio}") | |
start_time = time.time() | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: | |
data_loader_train.sampler.set_epoch(epoch) | |
if log_writer is not None: | |
log_writer.set_step(epoch * num_training_steps_per_epoch) | |
train_stats = train_one_epoch( | |
model, data_loader_train, | |
optimizer, device, epoch, loss_scaler, | |
args.clip_grad, log_writer=log_writer, | |
start_steps=epoch * num_training_steps_per_epoch, | |
lr_schedule_values=lr_schedule_values, | |
wd_schedule_values=wd_schedule_values, | |
clip_teacher_model=clip_teacher_model, | |
clip_input_resolution=args.clip_input_resolution, | |
distill_final_features=distill_final_features, | |
clip_loss_ratio=args.clip_loss_ratio, | |
mae_teacher_model=mae_teacher_model, | |
mae_input_resolution=args.mae_input_resolution, | |
mae_loss_ratio=args.mae_loss_ratio, | |
td_ratio=args.mae_tubelet_size//args.tubelet_size, | |
mask_type=args.mask_type, | |
mask_ratio=args.mask_ratio, | |
bf16=args.bf16, | |
) | |
if args.output_dir: | |
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, | |
optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, | |
ceph_args=ceph_args, | |
) | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, | |
optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, | |
model_name='latest', ceph_args=ceph_args, | |
) | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, 'n_parameters': n_parameters} | |
if args.output_dir and utils.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
opts, ds_init = get_args() | |
if opts.output_dir: | |
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) | |
main(opts, ds_init) | |