Spaces:
Running
on
Zero
Running
on
Zero
import warnings | |
warnings.filterwarnings('ignore', category=DeprecationWarning) | |
import os | |
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' | |
from pathlib import Path | |
from collections import defaultdict | |
import hydra | |
import numpy as np | |
import torch | |
import wandb | |
from dm_env import specs | |
import tools.utils as utils | |
from tools.logger import Logger | |
from tools.replay import ReplayBuffer, make_replay_loader | |
torch.backends.cudnn.benchmark = True | |
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg): | |
cfg.obs_type = obs_type | |
cfg.obs_shape = obs_spec.shape | |
cfg.action_shape = action_spec.shape | |
cfg.num_expl_steps = num_expl_steps | |
return hydra.utils.instantiate(cfg) | |
def make_dreamer_agent(obs_space, action_spec, cur_config, cfg): | |
from copy import deepcopy | |
cur_config = deepcopy(cur_config) | |
if hasattr(cur_config, 'agent'): | |
del cur_config.agent | |
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec) | |
class Workspace: | |
def __init__(self, cfg, savedir=None, workdir=None,): | |
self.workdir = Path.cwd() if workdir is None else workdir | |
print(f'workspace: {self.workdir}') | |
self.cfg = cfg | |
utils.set_seed_everywhere(cfg.seed) | |
self.device = torch.device(cfg.device) | |
# create logger | |
self.logger = Logger(self.workdir, | |
use_tb=cfg.use_tb, | |
use_wandb=cfg.use_wandb) | |
# create envs | |
self.task = task = cfg.task | |
img_size = cfg.img_size | |
import envs.main as envs | |
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering) | |
# # create agent | |
sample_agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent) | |
# create replay buffer | |
data_specs = (self.train_env.obs_space, | |
self.train_env.act_space, | |
specs.Array((1,), np.float32, 'reward'), | |
specs.Array((1,), np.float32, 'discount')) | |
if cfg.train_from_data: | |
# Loading replay buffer | |
if cfg.replay_from_wandb_project is not None: | |
api = wandb.Api() | |
project_name = cfg.replay_from_wandb_project | |
params2search = { | |
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot, | |
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot, | |
} | |
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}") | |
found = False | |
for run in runs: | |
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]): | |
found = True | |
found_path = Path(run.config['workdir'].replace('/code', '')) | |
break | |
if not found: | |
raise Exception("Replay from wandb buffer not found") | |
replay_dir = found_path / 'code' / 'buffer' | |
else: | |
replay_dir = Path(cfg.replay_load_dir) | |
# create data storage | |
self.replay_storage = ReplayBuffer(data_specs, [], | |
replay_dir, | |
length=cfg.batch_length, **cfg.replay, | |
device=cfg.device, ignore_extra_keys=True, load_recursive=True) | |
print('Loaded ', self.replay_storage._loaded_episodes, 'episodes from ', str(replay_dir)) | |
# create replay buffer | |
self.replay_loader = make_replay_loader(self.replay_storage, | |
cfg.batch_size,) | |
self._replay_iter = None | |
# Loading snapshot | |
if cfg.snapshot_from_wandb_project is not None: | |
api = wandb.Api() | |
project_name = cfg.snapshot_from_wandb_project | |
params2search = { | |
"task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot, | |
"agent_name" : cfg.agent.name if cfg.agent_name_snapshot is None else cfg.agent_name_snapshot, | |
"seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot, | |
} | |
if cfg.agent.clip_lafite_noise > 0.: | |
params2search['clip_lafite_noise'] = cfg.agent.clip_lafite_noise | |
if cfg.agent.clip_add_noise > 0.: | |
params2search['clip_add_noise'] = cfg.agent.clip_add_noise | |
if cfg.reset_connector: | |
del params2search['clip_add_noise'] | |
runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}") | |
found = False | |
for run in runs: | |
if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]): | |
found = True | |
found_path = Path(run.config['workdir'].replace('/code', '')) | |
break | |
if not found: | |
raise Exception("Snapshot from wandb not found") | |
if cfg.snapshot_step is None: | |
snapshot_dir = found_path / 'code' / 'last_snapshot.pt' | |
else: | |
snapshot_dir = found_path / 'code' / f'snapshot_{cfg.snapshot_step}.pt' | |
elif cfg.snapshot_load_dir is not None: | |
snapshot_dir = Path(cfg.snapshot_load_dir) | |
else: | |
snapshot_dir = None | |
if snapshot_dir is not None: | |
self.load_snapshot(snapshot_dir, resume=False) | |
if self.cfg.reset_world_model: | |
self.agent.wm = sample_agent.wm | |
# To reset optimization | |
from agent import dreamer_utils as common | |
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp) | |
if self.cfg.reset_connector: | |
self.agent.wm.connector = sample_agent.wm.connector | |
# To reset optimization | |
from agent import dreamer_utils as common | |
self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp) | |
# overwriting cfg | |
self.agent.cfg = sample_agent.cfg | |
self.agent.wm.cfg = sample_agent.wm.cfg | |
if self.cfg.reset_imag_behavior: | |
self.agent.instantiate_imag_behavior() | |
else: | |
self.agent = sample_agent | |
self.eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64, ) | |
if hasattr(self.eval_env, 'eval_mode'): | |
self.eval_env.eval_mode() | |
eval_specs = (self.eval_env.obs_space, | |
self.eval_env.act_space, | |
specs.Array((1,), np.float32, 'reward'), | |
specs.Array((1,), np.float32, 'discount')) | |
self.eval_storage = ReplayBuffer(eval_specs, {}, | |
self.workdir / 'eval_buffer', | |
length=cfg.batch_length, **cfg.replay, | |
device=cfg.device, ignore_extra_keys=True,) | |
self.eval_storage._minlen = 1 | |
self.timer = utils.Timer() | |
self._global_step = 0 | |
self._global_episode = 0 | |
def global_step(self): | |
return self._global_step | |
def global_episode(self): | |
return self._global_episode | |
def global_frame(self): | |
return self.global_step * self.cfg.action_repeat | |
def replay_iter(self): | |
if self._replay_iter is None: | |
self._replay_iter = iter(self.replay_loader) | |
return self._replay_iter | |
def eval(self): | |
import envs.main as envs | |
eval_until_episode = utils.Until(self.cfg.num_eval_episodes) | |
episode_reward = [] | |
while eval_until_episode(len(episode_reward)): | |
if len(episode_reward) > 0 and self.global_step == 0: | |
return | |
episode_reward.append(0) | |
step, episode = 0, defaultdict(list) | |
meta = self.agent.init_meta() | |
time_step, dreamer_obs = self.eval_env.reset() | |
data = dreamer_obs | |
if 'clip_video' in data: | |
del data['clip_video'] | |
self.eval_storage.add(data, meta) | |
agent_state = None | |
while not time_step.last(): | |
with torch.no_grad(), utils.eval_mode(self.agent): | |
action, agent_state = self.agent.act(dreamer_obs, | |
meta, | |
self.global_step, | |
eval_mode=True, | |
state=agent_state) | |
time_step, dreamer_obs = self.eval_env.step(action) | |
for k in dreamer_obs: | |
episode[k].append(dreamer_obs[k]) | |
episode_reward[-1] += time_step.reward | |
if time_step.last(): | |
if episode_reward[-1] == np.max(episode_reward): | |
best_episode = {**episode} | |
if episode_reward[-1] == np.min(episode_reward): | |
worst_episode = {**episode} | |
data = dreamer_obs | |
if 'clip_video' in data: | |
del data['clip_video'] | |
self.eval_storage.add(data, meta) | |
step += 1 | |
if self.global_step > 0 and self.global_frame % self.cfg.log_episodes_every_frames == 0: | |
# B, T, C, H, W = video.shape | |
videos = {'best_episode' : np.stack(best_episode['observation'], axis=0), | |
'worst_episode' : np.stack(worst_episode['observation'], axis=0),} | |
self.logger.log_visual(videos, self.global_frame) | |
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: | |
log('episode_reward', np.mean(episode_reward)) | |
log('episode_length', step * self.cfg.action_repeat) | |
log('episode', self.global_episode) | |
log('step', self.global_step) | |
def eval_imag_behavior(self,): | |
self.agent._backup_acting_behavior = self.agent._acting_behavior | |
self.agent._acting_behavior = self.agent._imag_behavior | |
self.eval() | |
self.agent._acting_behavior = self.agent._backup_acting_behavior | |
def train(self): | |
# predicates | |
train_until_step = utils.Until(self.cfg.num_train_frames, 1) | |
eval_every_step = utils.Every(self.cfg.eval_every_frames, 1) | |
should_log_scalars = utils.Every(self.cfg.log_every_frames, 1) | |
should_save_model = utils.Every(self.cfg.save_every_frames, 1) | |
should_log_visual = utils.Every(self.cfg.visual_every_frames, 1) | |
metrics = None | |
while train_until_step(self.global_step): | |
# try to evaluate | |
if eval_every_step(self.global_step): | |
if self.cfg.eval_modality == 'task': | |
self.eval() | |
if self.cfg.eval_modality == 'task_imag': | |
self.eval_imag_behavior() | |
if self.cfg.eval_modality == 'from_text': | |
self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame) | |
self.eval_from_text() | |
if self.cfg.train_from_data: | |
# Sampling data | |
batch_data = next(self.replay_iter) | |
if self.cfg.train_world_model: | |
state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step) | |
else: | |
with torch.no_grad(): | |
outputs, metrics = self.agent.wm.observe_data(batch_data,) | |
if self.cfg.train_connector: | |
_, metrics = self.agent.wm.update_additional_detached_modules(batch_data, outputs, metrics) | |
else: | |
imag_warmup_steps = self.cfg.imag_warmup_steps | |
metrics, batch_data = {}, None | |
with torch.no_grad(): | |
# fake actions | |
mix = self.cfg.mix_random_actions | |
random = False | |
# num warmup steps | |
if mix: | |
init = self.agent.wm.rssm.initial(self.cfg.batch_size * (self.cfg.batch_length // 2)) | |
else: | |
init = self.agent.wm.rssm.initial(self.cfg.batch_size * self.cfg.batch_length) | |
unif_dist = self.agent.wm.rssm.get_unif_dist(init) | |
if 'logit' in init: | |
init['logit'] = unif_dist.mean | |
else: | |
init['mean'] = unif_dist.mean | |
init['std'] = unif_dist.std | |
init['stoch'] = unif_dist.sample() | |
if self.cfg.start_from_video in [True, 'mix']: | |
T = self.agent.wm.connector.n_frames * 2 # should this be an hyperparam? | |
B = init['deter'].shape[0] // T | |
text_feat_dim = self.agent.wm.connector.viclip_emb_dim | |
video_embed = torch.randn((B, T, text_feat_dim), device=self.agent.device) | |
video_embed = torch.nn.functional.normalize(video_embed, dim=-1) | |
# Get initial state | |
video_init = self.agent.wm.connector.video_imagine(video_embed, dreamer_init=None, sample=True, reset_every_n_frames=False, denoise=True) | |
video_init = { k : v.reshape(B * T, *v.shape[2:]) for k, v in video_init.items()} | |
if self.cfg.start_from_video == 'mix': | |
probs = torch.rand((B * T, 1,1), device=init['stoch'].device) > 0.5 # should this be an hyperparam? | |
init['stoch'] = (probs * init['stoch']) + ( (~probs) * video_init['stoch'] ) | |
else: | |
init['stoch'] = video_init['stoch'] | |
if random: | |
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1 | |
post = self.agent.wm.rssm.imagine(fake_action, init, sample=True) | |
post = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() } | |
elif mix: | |
fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length // 2, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1 | |
post1 = self.agent.wm.rssm.imagine(fake_action, init, sample=True) | |
post1 = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post1.items() } | |
init2 = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[1:])) for k,v in init.items() } | |
post2 = self.agent.wm.imagine(self.agent._imag_behavior.actor, init2, None, imag_warmup_steps) | |
post2 = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post2.items() } | |
post = { k: torch.cat([post1[k], post2[k]], dim=1) for k in post1 } | |
else: | |
init = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[1:])) for k,v in init.items() } | |
post = self.agent.wm.imagine(self.agent._imag_behavior.actor, init, None, imag_warmup_steps) | |
post = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() } | |
is_terminal = torch.zeros(self.cfg.batch_size, self.cfg.batch_length, device=self.agent.device) | |
outputs = dict(post=post, is_terminal=is_terminal) | |
if getattr(self.cfg.agent, 'imag_reward_fn', None) is not None: | |
metrics.update(self.agent.update_imag_behavior(state=None, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1]) | |
if self.global_step > 0: | |
if should_log_scalars(self.global_step): | |
if hasattr(self, 'replay_storage'): | |
metrics.update(self.replay_storage.stats) | |
self.logger.log_metrics(metrics, self.global_frame, ty='train') | |
if should_log_visual(self.global_step) and self.cfg.train_from_data and hasattr(self.agent, 'report'): | |
with torch.no_grad(), utils.eval_mode(self.agent): | |
videos = self.agent.report(next(self.replay_iter)) | |
self.logger.log_visual(videos, self.global_frame) | |
if should_log_scalars(self.global_step): | |
elapsed_time, total_time = self.timer.reset() | |
with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log: | |
log('fps', self.cfg.log_every_frames / elapsed_time) | |
log('step', self.global_step) | |
if 'model_loss' in metrics: | |
log('episode_reward', metrics['model_loss'].item()) | |
# save last model | |
if should_save_model(self.global_step): | |
self.save_last_model() | |
self._global_step += 1 | |
# == 1000 is to make sure everything is going well since the start | |
if (self.global_frame == 1000) or (self.global_frame % self.cfg.snapshot_every_frames == 0): | |
self.save_snapshot() | |
def save_snapshot(self): | |
snapshot = self.root_dir / f'snapshot_{self.global_frame}.pt' | |
keys_to_save = ['agent', '_global_step', '_global_episode'] | |
payload = {k: self.__dict__[k] for k in keys_to_save} | |
with snapshot.open('wb') as f: | |
torch.save(payload, f) | |
def setup_wandb(self): | |
cfg = self.cfg | |
exp_name = '_'.join([ | |
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
str(cfg.seed) | |
]) | |
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name) | |
flat_cfg = utils.flatten_dict(cfg) | |
wandb.config.update(flat_cfg) | |
self.wandb_run_id = wandb.run.id | |
def save_last_model(self): | |
snapshot = self.root_dir / 'last_snapshot.pt' | |
if snapshot.is_file(): | |
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt")) | |
os.replace(snapshot, temp) | |
keys_to_save = ['agent', '_global_step', '_global_episode'] | |
if self.cfg.use_wandb: | |
keys_to_save.append('wandb_run_id') | |
payload = {k: self.__dict__[k] for k in keys_to_save} | |
with snapshot.open('wb') as f: | |
torch.save(payload, f) | |
def load_snapshot(self, snapshot_dir, resume=True): | |
print('Loading snapshot from: ', str(snapshot_dir)) | |
try: | |
snapshot = snapshot_dir / 'last_snapshot.pt' if resume else snapshot_dir | |
with snapshot.open('rb') as f: | |
payload = torch.load(f) | |
except: | |
snapshot = Path(str(snapshot_dir).replace('last_snapshot', 'second_last_snapshot')) | |
with snapshot.open('rb') as f: | |
payload = torch.load(f) | |
if type(payload) != dict: | |
self.agent = payload | |
self.agent.requires_grad_(requires_grad=False) | |
return | |
for k,v in payload.items(): | |
setattr(self, k, v) | |
if k == 'wandb_run_id' and resume: | |
assert wandb.run is None | |
cfg = self.cfg | |
exp_name = '_'.join([ | |
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
str(cfg.seed) | |
]) | |
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must") | |
def get_snapshot_dir(self): | |
snap_dir = self.cfg.snapshot_dir | |
snapshot_dir = self.workdir / Path(snap_dir) | |
snapshot_dir.mkdir(exist_ok=True, parents=True) | |
return snapshot_dir | |
def start_training(cfg, savedir, workdir): | |
from train import Workspace as W | |
root_dir = Path.cwd() | |
cfg.workdir = str(root_dir) | |
workspace = W(cfg, savedir, workdir) | |
workspace.root_dir = root_dir | |
snapshot = workspace.root_dir / 'last_snapshot.pt' | |
if snapshot.exists(): | |
print(f'resuming: {snapshot}') | |
workspace.load_snapshot(workspace.root_dir) | |
if cfg.use_wandb and wandb.run is None: | |
# otherwise it was resumed | |
workspace.setup_wandb() | |
workspace.train() | |
def main(cfg): | |
start_training(cfg, None, None) | |
if __name__ == '__main__': | |
main() | |