mazpie's picture
Initial commit
2d9a728
raw
history blame
36.2 kB
import io
import os
import math
import time
import json
from collections import defaultdict, deque
import datetime
import numpy as np
from timm.utils import get_state_dict
from torch.utils.data._utils.collate import default_collate
from pathlib import Path
import subprocess
import torch
import torch.distributed as dist
from torch._six import inf
import random
from tensorboardX import SummaryWriter
import fnmatch
try:
from petrel_client.client import Client
has_client = True
client = Client('~/petreloss.conf')
except ImportError:
has_client = False
client = None
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
data_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def log_every_joint(self, video_loader, image_loader, print_freq, header=None, image_num_ratio=1.0):
# prepare random squeue
total_len = int(len(video_loader) + len(image_loader) * image_num_ratio)
random_sequence = np.arange(total_len)
np.random.shuffle(random_sequence)
loader_list = [iter(video_loader), iter(image_loader)]
# prepare print template
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
data_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
space_fmt = ':' + str(len(str(total_len))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for i, random_num in enumerate(random_sequence):
# randomly selct image or video
if random_num < len(video_loader):
loader_idx = 0
use_image = False
mark = '<<VIDEO BATCH>>\t'
else:
loader_idx = 1
use_image = True
mark = '<<IMAGE BATCH>>\t'
data_time.update(time.time() - end)
yield (next(loader_list[loader_idx]), use_image)
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == total_len - 1:
eta_seconds = iter_time.global_avg * (total_len - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(mark, log_msg.format(
i, total_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(mark, log_msg.format(
i, total_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / total_len))
class TensorboardLogger(object):
def __init__(self, log_dir):
self.writer = SummaryWriter(logdir=log_dir)
self.step = 0
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def update(self, head='scalar', step=None, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step)
def flush(self):
self.writer.flush()
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def get_ceph_path(ckpt_path, ceph_args):
sub_path = str(ckpt_path).split(ceph_args['ckpt_path_split'])[-1]
ceph_ckpt_path = os.path.join(ceph_args['ceph_checkpoint_prefix'], sub_path)
return sub_path, ceph_ckpt_path
def save_on_master(obj, ckpt_path, ceph_args):
if is_main_process():
if ceph_args['use_ceph_checkpoint']:
assert has_client == True, "petrel_client is not installed!!!"
_, ceph_ckpt_path = get_ceph_path(ckpt_path, ceph_args)
with io.BytesIO() as f:
torch.save(obj, f)
client.put(ceph_ckpt_path, f.getvalue())
else:
torch.save(obj, ckpt_path)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = int(os.environ['SLURM_LOCALID'])
args.world_size = int(os.environ['SLURM_NTASKS'])
os.environ['RANK'] = str(args.rank)
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['WORLD_SIZE'] = str(args.world_size)
node_list = os.environ['SLURM_NODELIST']
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
if 'MASTER_ADDR' not in os.environ:
os.environ['MASTER_ADDR'] = addr
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
# assert torch.distributed.is_initialized()
setup_for_distributed(args.rank == 0)
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
start_warmup_value=0, warmup_steps=-1):
warmup_schedule = np.array([])
warmup_iters = int(warmup_epochs * niter_per_ep)
if warmup_steps > 0:
warmup_iters = warmup_steps
print("Set warmup steps = %d" % warmup_iters)
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = np.array(
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, model_name=None, ceph_args={'use_ceph_checkpoint': False}):
output_dir = Path(args.output_dir)
if model_name is None:
model_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % model_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_master(to_save, checkpoint_path, ceph_args=ceph_args)
else:
client_state = {'epoch': epoch}
if model_ema is not None:
client_state['model_ema'] = get_state_dict(model_ema)
if ceph_args['use_ceph_checkpoint']:
sub_path, ceph_save_dir = get_ceph_path(output_dir, ceph_args)
local_save_dir = os.path.join('/dev/shm', sub_path)
Path(local_save_dir).mkdir(parents=True, exist_ok=True)
else:
local_save_dir = output_dir
tag_name = "checkpoint-%s" % model_name
model.save_checkpoint(save_dir=local_save_dir, tag=tag_name, client_state=client_state)
if ceph_args['use_ceph_checkpoint'] and ceph_args['local_rank'] == 0:
try:
assert has_client == True, "petrel_client is not installed!!!"
ckpt_shm_dir = os.path.join(local_save_dir, tag_name)
ckpt_petrel_dir = os.path.join(ceph_save_dir, tag_name)
for f_name in os.listdir(ckpt_shm_dir):
f_shm_path = os.path.join(ckpt_shm_dir, f_name)
f_petrel_path = os.path.join(ckpt_petrel_dir, f_name)
with open(f_shm_path, 'rb') as f:
print(f"Upload checkpoint at {f_petrel_path}", flush=True)
client.put(f_petrel_path, f)
print("Finish! Will remove the original files!", flush=True)
os.remove(f_shm_path)
except Exception as e:
print(f'Fail to upload or delete {f_shm_path} with error {e}')
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, ceph_args={'use_ceph_checkpoint': False}):
output_dir = Path(args.output_dir)
if ceph_args['use_ceph_checkpoint']:
assert has_client == True, "petrel_client is not installed!!!"
sub_path, ceph_save_dir = get_ceph_path(output_dir, ceph_args)
if loss_scaler is not None:
# torch.amp
if args.test_best and args.eval:
args.resume = os.path.join(ceph_save_dir, 'checkpoint-best.pth')
elif check_ceph_exists(os.path.join(ceph_save_dir, 'checkpoint-latest.pth')):
args.resume = os.path.join(ceph_save_dir, 'checkpoint-latest.pth')
elif args.auto_resume and len(args.resume) == 0:
all_checkpoints = fnmatch.filter(list(client.list(ceph_save_dir)), 'checkpoint-*')
all_checkpoints = [
os.path.join(ceph_save_dir, ckpt_path)
for ckpt_path in all_checkpoints
]
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
with io.BytesIO(client.get(args.resume)) as buffer:
checkpoint = torch.load(buffer, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
flag = False
if args.test_best and args.eval:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='best', ceph_args=ceph_args
)
flag = True
except Exception:
print('No best model')
if not flag:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='latest', ceph_args=ceph_args
)
flag = True
except Exception:
print('No latest model')
if not flag:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='best', ceph_args=ceph_args
)
flag = True
except Exception:
print('No best model')
if not flag:
all_checkpoints = fnmatch.filter(list(client.list(ceph_save_dir)), 'checkpoint-*')
all_checkpoints = [
os.path.join(ceph_save_dir, ckpt_path)
for ckpt_path in all_checkpoints
]
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name=latest_ckpt, ceph_args=ceph_args
)
else:
print('No other models')
else:
if loss_scaler is not None:
# torch.amp
if args.test_best and args.eval:
args.resume = os.path.join(output_dir, 'checkpoint-best.pth')
elif os.path.exists(os.path.join(output_dir, 'checkpoint-latest.pth')):
args.resume = os.path.join(output_dir, 'checkpoint-latest.pth')
elif args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
flag = False
if args.test_best and args.eval:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='best')
flag = True
except Exception:
print('No best model')
if not flag:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='latest')
flag = True
except Exception:
print('No latest model')
if not flag:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='best')
flag = True
except Exception:
print('No best model')
if not flag:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
load_specific_model(model, model_ema, args, output_dir, model_name=latest_ckpt)
else:
print('No other models')
def load_specific_model(model, model_ema, args, output_dir, model_name):
args.resume = os.path.join(output_dir, f'checkpoint-{model_name}')
print(f"Auto resume the {model_name} checkpoint")
_, client_states = model.load_checkpoint(args.output_dir, tag=f'checkpoint-{model_name}')
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
def check_ceph_exists(ceph_path):
return list(client.list(ceph_path)) > 0
def load_specific_ceph_model(model, model_ema, args, sub_path, ceph_save_dir, model_name, ceph_args):
tag_name = f'checkpoint-{model_name}'
args.resume = os.path.join(ceph_save_dir, tag_name)
print(f"Auto resume checkpoint: {args.resume}", flush=True)
shm_resume_dir = os.path.join('/dev/shm', sub_path, tag_name)
Path(shm_resume_dir).mkdir(parents=True, exist_ok=True)
if ceph_args['local_rank'] == 0:
for f_name in client.list(args.resume):
ckpt_petrel_path = os.path.join(args.resume, f_name)
ckpt_shm_path = os.path.join(shm_resume_dir, f_name)
print(f"Download model from {ckpt_petrel_path}", flush=True)
with open(ckpt_shm_path, 'wb') as f:
f.write(memoryview(client.get(ckpt_petrel_path)))
print("Finish downloading!", flush=True)
torch.distributed.barrier()
_, client_states = model.load_checkpoint(os.path.join('/dev/shm', sub_path), tag=f'checkpoint-{model_name}')
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
if ceph_args['local_rank'] == 0:
try:
for root, dirs, files in os.walk(shm_resume_dir):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
os.rmdir(root)
except Exception as e:
print(f'Fail to clean {shm_resume_dir} with error {e}')
def create_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
0.9,
0.999
],
"eps": 1e-8
}
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"initial_scale_power": 7,
"loss_scale_window": 128
}
}
writer.write(json.dumps(ds_config, indent=2))
def create_internvideo2_lp_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
args.opt_betas[0],
args.opt_betas[1]
],
"eps": args.opt_eps
}
},
"fp16": {
"enabled": not args.bf16,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": args.bf16
},
}
if args.clip_grad is not None:
ds_config.update({'gradient_clipping': args.clip_grad})
writer.write(json.dumps(ds_config, indent=2))
# stolen from https://github.com/baaivision/EVA/blob/7389aeeec97c056fc8424fa6b78f35c6f1b07d0d/EVA-02/asuka/utils.py#L529C5-L599C54
def create_internvideo_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": args.steps_per_print,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
args.opt_betas[0],
args.opt_betas[1]
],
"eps": args.opt_eps
}
},
"fp16": {
"enabled": not args.bf16,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": args.bf16
},
"amp": {
"enabled": False,
"opt_level": "O2"
},
"flops_profiler": {
"enabled": True,
"profile_step": -1,
"module_depth": -1,
"top_modules": 1,
"detailed": True,
},
"zero_allow_untested_optimizer": True
}
if args.clip_grad is not None:
ds_config.update({'gradient_clipping': args.clip_grad})
if args.zero_stage == 1:
ds_config.update(
{
"zero_optimization": {
"stage": 1,
"reduce_bucket_size": 5e8,
}
}
)
elif args.zero_stage == 2:
ds_config.update(
{
"zero_optimization": {
"stage": 2,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"cpu_offload": False,
}
}
)
elif args.zero_stage == 3:
ds_config.update(
{
"zero_optimization": {
"stage": 3,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e4,
"allgather_bucket_size": 5e4,
"cpu_offload": False,
"stage3_max_live_parameters": 1e5,
"stage3_max_reuse_distance": 1e5,
},
}
)
elif args.zero_stage > 3:
raise NotImplementedError()
opt_lower = args.opt.lower()
if opt_lower != 'adamw': del ds_config['optimizer']
writer.write(json.dumps(ds_config, indent=2))
def multiple_samples_collate(batch, fold=False):
"""
Collate function for repeated augmentation. Each instance in the batch has
more than one sample.
Args:
batch (tuple or list): data batch to collate.
Returns:
(tuple): collated data batch.
"""
inputs, labels, video_idx, extra_data = zip(*batch)
inputs = [item for sublist in inputs for item in sublist]
labels = [item for sublist in labels for item in sublist]
video_idx = [item for sublist in video_idx for item in sublist]
inputs, labels, video_idx, extra_data = (
default_collate(inputs),
default_collate(labels),
default_collate(video_idx),
default_collate(extra_data),
)
if fold:
return [inputs], labels, video_idx, extra_data
else:
return inputs, labels, video_idx, extra_data
def multiple_pretrain_samples_collate(batch, fold=False):
"""
Collate function for repeated augmentation. Each instance in the batch has
more than one sample.
Args:
batch (tuple or list): data batch to collate.
Returns:
(tuple): collated data batch.
"""
process_data, mask = zip(*batch)
process_data = [item for sublist in process_data for item in sublist]
mask = [item for sublist in mask for item in sublist]
process_data, mask = (
default_collate(process_data),
default_collate(mask),
)
if fold:
return [process_data], mask
else:
return process_data, mask