Spaces:
Running
on
Zero
Running
on
Zero
import re | |
import numpy as np | |
import tools.utils as utils | |
import torch.nn as nn | |
import torch | |
import torch.distributions as D | |
import torch.nn.functional as F | |
Module = nn.Module | |
def symlog(x): | |
return torch.sign(x) * torch.log(torch.abs(x) + 1.0) | |
def symexp(x): | |
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0) | |
def signed_hyperbolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor: | |
"""Signed hyperbolic transform, inverse of signed_parabolic.""" | |
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x | |
def signed_parabolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor: | |
"""Signed parabolic transform, inverse of signed_hyperbolic.""" | |
z = torch.sqrt(1 + 4 * eps * (eps + 1 + torch.abs(x))) / 2 / eps - 1 / 2 / eps | |
return torch.sign(x) * (torch.square(z) - 1) | |
class SampleDist: | |
def __init__(self, dist: D.Distribution, samples=100): | |
self._dist = dist | |
self._samples = samples | |
def name(self): | |
return 'SampleDist' | |
def __getattr__(self, name): | |
return getattr(self._dist, name) | |
def mean(self): | |
sample = self._dist.rsample((self._samples,)) | |
return torch.mean(sample, 0) | |
def mode(self): | |
dist = self._dist.expand((self._samples, *self._dist.batch_shape)) | |
sample = dist.rsample() | |
logprob = dist.log_prob(sample) | |
batch_size = sample.size(1) | |
feature_size = sample.size(2) | |
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size) | |
return torch.gather(sample, 0, indices).squeeze(0) | |
def entropy(self): | |
sample = self._dist.rsample((self._samples,)) | |
logprob = self._dist.log_prob(sample) | |
return -torch.mean(logprob, 0) | |
def sample(self): | |
return self._dist.rsample() | |
class MSEDist: | |
def __init__(self, mode, agg="sum"): | |
self._mode = mode | |
self._agg = agg | |
def mean(self): | |
return self._mode | |
def mode(self): | |
return self._mode | |
def log_prob(self, value): | |
assert self._mode.shape == value.shape, (self._mode.shape, value.shape) | |
distance = (self._mode - value) ** 2 | |
if self._agg == "mean": | |
loss = distance.mean(list(range(len(distance.shape)))[2:]) | |
elif self._agg == "sum": | |
loss = distance.sum(list(range(len(distance.shape)))[2:]) | |
else: | |
raise NotImplementedError(self._agg) | |
return -loss | |
class SymlogDist: | |
def __init__(self, mode, dims, dist='mse', agg='sum', tol=1e-8): | |
self._mode = mode | |
self._dims = tuple([-x for x in range(1, dims + 1)]) | |
self._dist = dist | |
self._agg = agg | |
self._tol = tol | |
self.batch_shape = mode.shape[:len(mode.shape) - dims] | |
self.event_shape = mode.shape[len(mode.shape) - dims:] | |
def mode(self): | |
return symexp(self._mode) | |
def mean(self): | |
return symexp(self._mode) | |
def log_prob(self, value): | |
assert self._mode.shape == value.shape, (self._mode.shape, value.shape) | |
if self._dist == 'mse': | |
distance = (self._mode - symlog(value)) ** 2 | |
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance) | |
elif self._dist == 'abs': | |
distance = torch.abs(self._mode - symlog(value)) | |
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance) | |
else: | |
raise NotImplementedError(self._dist) | |
if self._agg == 'mean': | |
loss = distance.mean(self._dims) | |
elif self._agg == 'sum': | |
loss = distance.sum(self._dims) | |
else: | |
raise NotImplementedError(self._agg) | |
return -loss | |
class TwoHotDist: | |
def __init__( | |
self, | |
logits, | |
low=-20.0, | |
high=20.0, | |
transfwd=symlog, | |
transbwd=symexp, | |
): | |
assert logits.shape[-1] == 255 | |
self.logits = logits | |
self.probs = torch.softmax(logits, -1) | |
self.buckets = torch.linspace(low, high, steps=255).to(logits.device) | |
self.width = (self.buckets[-1] - self.buckets[0]) / 255 | |
self.transfwd = transfwd | |
self.transbwd = transbwd | |
def mean(self): | |
_mean = self.probs * self.buckets | |
return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True)) | |
def mode(self): | |
return self.mean | |
# Inside OneHotCategorical, log_prob is calculated using only max element in targets | |
def log_prob(self, x): | |
x = self.transfwd(x) | |
# x(time, batch, 1) | |
below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1 | |
above = len(self.buckets) - torch.sum( | |
(self.buckets > x[..., None]).to(torch.int32), dim=-1 | |
) | |
# this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits. | |
below = torch.clip(below, 0, len(self.buckets) - 1) | |
above = torch.clip(above, 0, len(self.buckets) - 1) | |
equal = below == above | |
dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x)) | |
dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x)) | |
total = dist_to_below + dist_to_above | |
weight_below = dist_to_above / total | |
weight_above = dist_to_below / total | |
target = ( | |
F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None] | |
+ F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None] | |
) | |
log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True) | |
target = target.squeeze(-2) | |
return (target * log_pred).sum(-1) | |
def log_prob_target(self, target): | |
log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True) | |
return (target * log_pred).sum(-1) | |
class OneHotDist(D.OneHotCategorical): | |
def __init__(self, logits=None, probs=None, unif_mix=0.99): | |
super().__init__(logits=logits, probs=probs) | |
probs = super().probs | |
probs = unif_mix * probs + (1 - unif_mix) * torch.ones_like(probs, device=probs.device) / probs.shape[-1] | |
super().__init__(probs=probs) | |
def mode(self): | |
_mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1]) | |
return _mode.detach() + super().logits - super().logits.detach() | |
def sample(self, sample_shape=(), seed=None): | |
if seed is not None: | |
raise ValueError('need to check') | |
sample = super().sample(sample_shape) | |
probs = super().probs | |
while len(probs.shape) < len(sample.shape): | |
probs = probs[None] | |
sample += probs - probs.detach() # ST-gradients | |
return sample | |
class BernoulliDist(D.Bernoulli): | |
def __init__(self, logits=None, probs=None): | |
super().__init__(logits=logits, probs=probs) | |
def sample(self, sample_shape=(), seed=None): | |
if seed is not None: | |
raise ValueError('need to check') | |
sample = super().sample(sample_shape) | |
probs = super().probs | |
while len(probs.shape) < len(sample.shape): | |
probs = probs[None] | |
sample += probs - probs.detach() # ST-gradients | |
return sample | |
def static_scan_for_lambda_return(fn, inputs, start): | |
last = start | |
indices = range(inputs[0].shape[0]) | |
indices = reversed(indices) | |
flag = True | |
for index in indices: | |
inp = lambda x: (_input[x].unsqueeze(0) for _input in inputs) | |
last = fn(last, *inp(index)) | |
if flag: | |
outputs = last | |
flag = False | |
else: | |
outputs = torch.cat([last, outputs], dim=0) | |
return outputs | |
def lambda_return( | |
reward, value, pcont, bootstrap, lambda_, axis): | |
# Setting lambda=1 gives a discounted Monte Carlo return. | |
# Setting lambda=0 gives a fixed 1-step return. | |
#assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape) | |
assert len(reward.shape) == len(value.shape), (reward.shape, value.shape) | |
if isinstance(pcont, (int, float)): | |
pcont = pcont * torch.ones_like(reward, device=reward.device) | |
dims = list(range(len(reward.shape))) | |
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:] | |
if axis != 0: | |
reward = reward.permute(dims) | |
value = value.permute(dims) | |
pcont = pcont.permute(dims) | |
if bootstrap is None: | |
bootstrap = torch.zeros_like(value[-1], device=reward.device) | |
if len(bootstrap.shape) < len(value.shape): | |
bootstrap = bootstrap[None] | |
next_values = torch.cat([value[1:], bootstrap], 0) | |
inputs = reward + pcont * next_values * (1 - lambda_) | |
returns = static_scan_for_lambda_return( | |
lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg, | |
(inputs, pcont), bootstrap) | |
if axis != 0: | |
returns = returns.permute(dims) | |
return returns | |
def static_scan(fn, inputs, start, reverse=False, unpack=False): | |
last = start | |
indices = range(inputs[0].shape[0]) | |
flag = True | |
for index in indices: | |
inp = lambda x: (_input[x] for _input in inputs) | |
if unpack: | |
last = fn(last, *[inp[index] for inp in inputs]) | |
else: | |
last = fn(last, inp(index)) | |
if flag: | |
if type(last) == type({}): | |
outputs = {key: [value] for key, value in last.items()} | |
else: | |
outputs = [] | |
for _last in last: | |
if type(_last) == type({}): | |
outputs.append({key: [value] for key, value in _last.items()}) | |
else: | |
outputs.append([_last]) | |
flag = False | |
else: | |
if type(last) == type({}): | |
for key in last.keys(): | |
outputs[key].append(last[key]) | |
else: | |
for j in range(len(outputs)): | |
if type(last[j]) == type({}): | |
for key in last[j].keys(): | |
outputs[j][key].append(last[j][key]) | |
else: | |
outputs[j].append(last[j]) | |
# Stack everything at the end | |
if type(last) == type({}): | |
for key in last.keys(): | |
outputs[key] = torch.stack(outputs[key], dim=0) | |
else: | |
for j in range(len(outputs)): | |
if type(last[j]) == type({}): | |
for key in last[j].keys(): | |
outputs[j][key] = torch.stack(outputs[j][key], dim=0) | |
else: | |
outputs[j] = torch.stack(outputs[j], dim=0) | |
if type(last) == type({}): | |
outputs = [outputs] | |
return outputs | |
class EnsembleRSSM(Module): | |
def __init__( | |
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False, | |
act='SiLU', norm='none', std_act='softplus', min_std=0.1, action_dim=None, embed_dim=1536, device='cuda', | |
single_obs_posterior=False, cell_input='stoch', cell_type='gru',): | |
super().__init__() | |
assert action_dim is not None | |
self.device = device | |
self._embed_dim = embed_dim | |
self._action_dim = action_dim | |
self._ensemble = ensemble | |
self._stoch = stoch | |
self._deter = deter | |
self._hidden = hidden | |
self._discrete = discrete | |
self._act = get_act(act) | |
self._norm = norm | |
self._std_act = std_act | |
self._min_std = min_std | |
self._cell_type = cell_type | |
self.cell_input = cell_input | |
if cell_type == 'gru': | |
self._cell = GRUCell(self._hidden, self._deter, norm=True, device=self.device) | |
else: | |
raise NotImplementedError(f"{cell_type} not implemented") | |
self.single_obs_posterior = single_obs_posterior | |
if discrete: | |
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, stoch*discrete) for _ in range(ensemble)]) | |
self._obs_dist = nn.Linear(hidden, stoch*discrete) | |
else: | |
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, 2*stoch) for _ in range(ensemble)]) | |
self._obs_dist = nn.Linear(hidden, 2*stoch) | |
# Layer that projects (stoch, input) to cell_state space | |
cell_state_input_size = getattr(self, f'get_{self.cell_input}_size')() | |
self._img_in = nn.Sequential(nn.Linear(cell_state_input_size + action_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden)) | |
# Layer that project deter -> hidden [before projecting hidden -> stoch] | |
self._ensemble_img_out = nn.ModuleList([ nn.Sequential(nn.Linear(self.get_deter_size(), hidden, bias=norm != 'none'), NormLayer(norm, hidden)) for _ in range(ensemble)]) | |
if self.single_obs_posterior: | |
self._obs_out = nn.Sequential(nn.Linear(embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden)) | |
else: | |
self._obs_out = nn.Sequential(nn.Linear(deter + embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden)) | |
def initial(self, batch_size): | |
if self._discrete: | |
state = dict( | |
logit=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device), | |
stoch=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device), | |
deter=self._cell.get_initial_state(None, batch_size)) | |
else: | |
state = dict( | |
mean=torch.zeros([batch_size, self._stoch], device=self.device), | |
std=torch.zeros([batch_size, self._stoch], device=self.device), | |
stoch=torch.zeros([batch_size, self._stoch], device=self.device), | |
deter=self._cell.get_initial_state(None, batch_size)) | |
return state | |
def observe(self, embed, action, is_first, state=None): | |
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape)))) | |
if state is None: state = self.initial(action.shape[0]) | |
post, prior = static_scan( | |
lambda prev, inputs: self.obs_step(prev[0], *inputs), | |
(swap(action), swap(embed), swap(is_first)), (state, state)) | |
post = {k: swap(v) for k, v in post.items()} | |
prior = {k: swap(v) for k, v in prior.items()} | |
return post, prior | |
def imagine(self, action, state=None, sample=True): | |
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape)))) | |
if state is None: | |
state = self.initial(action.shape[0]) | |
assert isinstance(state, dict), state | |
action = swap(action) | |
prior = static_scan(self.img_step, [action, float(sample) + torch.zeros(action.shape[0])], state, unpack=True)[0] | |
prior = {k: swap(v) for k, v in prior.items()} | |
return prior | |
def get_stoch_size(self,): | |
if self._discrete: | |
return self._stoch * self._discrete | |
else: | |
return self._stoch | |
def get_deter_size(self,): | |
return self._cell.state_size | |
def get_feat_size(self,): | |
return self.get_deter_size() + self.get_stoch_size() | |
def get_stoch(self, state): | |
stoch = state['stoch'] | |
if self._discrete: | |
shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete] | |
stoch = stoch.reshape(shape) | |
return stoch | |
def get_deter(self, state): | |
return state['deter'] | |
def get_feat(self, state): | |
deter = self.get_deter(state) | |
stoch = self.get_stoch(state) | |
return torch.cat([stoch, deter], -1) | |
def get_dist(self, state, ensemble=False): | |
if ensemble: | |
state = self._suff_stats_ensemble(state['deter']) | |
if self._discrete: | |
logit = state['logit'] | |
dist = D.Independent(OneHotDist(logit.float()), 1) | |
else: | |
mean, std = state['mean'], state['std'] | |
dist = D.Independent(D.Normal(mean, std), 1) | |
dist.sample = dist.rsample | |
return dist | |
def get_unif_dist(self, state): | |
if self._discrete: | |
logit = state['logit'] | |
dist = D.Independent(OneHotDist(torch.ones_like(logit, device=logit.device)), 1) | |
else: | |
mean, std = state['mean'], state['std'] | |
dist = D.Independent(D.Normal(torch.zeros_like(mean, device=mean.device), torch.ones_like(std, device=std.device)), 1) | |
dist.sample = dist.rsample | |
return dist | |
def obs_step(self, prev_state, prev_action, embed, is_first, should_sample=True): | |
if is_first.any(): | |
prev_state = { k: torch.einsum('b,b...->b...', 1.0 - is_first.float(), x) for k, x in prev_state.items() } | |
prev_action = torch.einsum('b,b...->b...', 1.0 - is_first.float(), prev_action) | |
# | |
prior = self.img_step(prev_state, prev_action, should_sample) | |
stoch, stats = self.get_post_stoch(embed, prior, should_sample) | |
post = {'stoch': stoch, 'deter': prior['deter'], **stats} | |
return post, prior | |
def get_post_stoch(self, embed, prior, should_sample=True): | |
if self.single_obs_posterior: | |
x = embed | |
else: | |
x = torch.cat([prior['deter'], embed], -1) | |
x = self._obs_out(x) | |
x = self._act(x) | |
bs = list(x.shape[:-1]) | |
x = x.reshape([-1, x.shape[-1]]) | |
stats = self._suff_stats_layer('_obs_dist', x) | |
stats = { k: v.reshape( bs + list(v.shape[1:])) for k, v in stats.items()} | |
dist = self.get_dist(stats) | |
stoch = dist.sample() if should_sample else dist.mode() | |
return stoch, stats | |
def img_step(self, prev_state, prev_action, sample=True,): | |
prev_state_input = getattr(self, f'get_{self.cell_input}')(prev_state) | |
x = torch.cat([prev_state_input, prev_action], -1) | |
x = self._img_in(x) | |
x = self._act(x) | |
deter = prev_state['deter'] | |
if self._cell_type == 'gru': | |
x, deter = self._cell(x, [deter]) | |
temp_state = {'deter' : deter[0] } | |
else: | |
raise NotImplementedError(f"no {self._cell_type} cell method") | |
deter = deter[0] # It's wrapped in a list. | |
stoch, stats = self.get_stoch_stats_from_deter_state(temp_state, sample) | |
prior = {'stoch': stoch, 'deter': deter, **stats} | |
return prior | |
def get_stoch_stats_from_deter_state(self, temp_state, sample=True): | |
stats = self._suff_stats_ensemble(self.get_deter(temp_state)) | |
index = torch.randint(0, self._ensemble, ()) | |
stats = {k: v[index] for k, v in stats.items()} | |
dist = self.get_dist(stats) | |
if sample: | |
stoch = dist.sample() | |
else: | |
try: | |
stoch = dist.mode() | |
except: | |
stoch = dist.mean | |
return stoch, stats | |
def _suff_stats_ensemble(self, inp): | |
bs = list(inp.shape[:-1]) | |
inp = inp.reshape([-1, inp.shape[-1]]) | |
stats = [] | |
for k in range(self._ensemble): | |
x = self._ensemble_img_out[k](inp) | |
x = self._act(x) | |
stats.append(self._suff_stats_layer('_ensemble_img_dist', x, k=k)) | |
stats = { | |
k: torch.stack([x[k] for x in stats], 0) | |
for k, v in stats[0].items()} | |
stats = { | |
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:])) | |
for k, v in stats.items()} | |
return stats | |
def _suff_stats_layer(self, name, x, k=None): | |
layer = getattr(self, name) | |
if k is not None: | |
layer = layer[k] | |
x = layer(x) | |
if self._discrete: | |
logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete]) | |
return {'logit': logit} | |
else: | |
mean, std = torch.chunk(x, 2, -1) | |
std = { | |
'softplus': lambda: F.softplus(std), | |
'sigmoid': lambda: torch.sigmoid(std), | |
'sigmoid2': lambda: 2 * torch.sigmoid(std / 2), | |
}[self._std_act]() | |
std = std + self._min_std | |
return {'mean': mean, 'std': std} | |
def vq_loss(self, post, prior, balance): | |
dim_repr = prior['output'].shape[-1] | |
# Vectors and codes are the same, but vectors have gradients | |
dyn_loss = balance * F.mse_loss(prior['output'], post['vectors'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['vectors']) | |
dyn_loss += balance * F.mse_loss(prior['output'], post['codes'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['codes']) | |
dyn_loss /= 2 | |
vq_loss = 0.25 * F.mse_loss(post['output'], post['codes'].detach()) + F.mse_loss(post['output'].detach(), post['codes']) | |
loss = vq_loss + dyn_loss | |
return loss * dim_repr, dyn_loss * dim_repr | |
def kl_loss(self, post, prior, forward, balance, free, free_avg,): | |
kld = D.kl_divergence | |
sg = lambda x: {k: v.detach() for k, v in x.items()} | |
lhs, rhs = (prior, post) if forward else (post, prior) | |
mix = balance if forward else (1 - balance) | |
dtype = post['stoch'].dtype | |
device = post['stoch'].device | |
free_tensor = torch.tensor([free], dtype=dtype, device=device) | |
if balance == 0.5: | |
value = kld(self.get_dist(lhs), self.get_dist(rhs)) | |
loss = torch.maximum(value, free_tensor).mean() | |
else: | |
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs))) | |
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs)) | |
if free_avg: | |
loss_lhs = torch.maximum(value_lhs.mean(), free_tensor) | |
loss_rhs = torch.maximum(value_rhs.mean(), free_tensor) | |
else: | |
loss_lhs = torch.maximum(value_lhs, free_tensor).mean() | |
loss_rhs = torch.maximum(value_rhs, free_tensor).mean() | |
loss = mix * loss_lhs + (1 - mix) * loss_rhs | |
return loss, value | |
class Encoder(Module): | |
def __init__( | |
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none', | |
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], symlog_inputs=False,): | |
super().__init__() | |
self.shapes = shapes | |
self.cnn_keys = [ | |
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] | |
self.mlp_keys = [ | |
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] | |
print('Encoder CNN inputs:', list(self.cnn_keys)) | |
print('Encoder MLP inputs:', list(self.mlp_keys)) | |
self._act = get_act(act) | |
self._norm = norm | |
self._cnn_depth = cnn_depth | |
self._cnn_kernels = cnn_kernels | |
self._mlp_layers = mlp_layers | |
self._symlog_inputs = symlog_inputs | |
if len(self.cnn_keys) > 0: | |
self._conv_model = [] | |
for i, kernel in enumerate(self._cnn_kernels): | |
if i == 0: | |
prev_depth = 3 | |
else: | |
prev_depth = 2 ** (i-1) * self._cnn_depth | |
depth = 2 ** i * self._cnn_depth | |
self._conv_model.append(nn.Conv2d(prev_depth, depth, kernel, stride=2)) | |
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm,depth)) | |
self._conv_model.append(self._act) | |
self._conv_model = nn.Sequential(*self._conv_model) | |
if len(self.mlp_keys) > 0: | |
self._mlp_model = [] | |
for i, width in enumerate(self._mlp_layers): | |
if i == 0: | |
prev_width = np.sum([shapes[k] for k in self.mlp_keys]) | |
else: | |
prev_width = self._mlp_layers[i-1] | |
self._mlp_model.append(nn.Linear(prev_width, width, bias=norm != 'none')) | |
self._mlp_model.append(NormLayer(norm, width)) | |
self._mlp_model.append(self._act) | |
if len(self._mlp_model) == 0: | |
self._mlp_model.append(nn.Identity()) | |
self._mlp_model = nn.Sequential(*self._mlp_model) | |
def forward(self, data): | |
key, shape = list(self.shapes.items())[0] | |
batch_dims = data[key].shape[:-len(shape)] | |
data = { | |
k: v.reshape((-1,) + tuple(v.shape)[len(batch_dims):]) | |
for k, v in data.items()} | |
outputs = [] | |
if self.cnn_keys: | |
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys})) | |
if self.mlp_keys: | |
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys})) | |
output = torch.cat(outputs, -1) | |
return output.reshape(batch_dims + output.shape[1:]) | |
def _cnn(self, data): | |
x = torch.cat(list(data.values()), -1) | |
x = self._conv_model(x) | |
return x.reshape(tuple(x.shape[:-3]) + (-1,)) | |
def _mlp(self, data): | |
x = torch.cat(list(data.values()), -1) | |
if self._symlog_inputs: | |
x = symlog(x) | |
x = self._mlp_model(x) | |
return x | |
class Decoder(Module): | |
def __init__( | |
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none', | |
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], embed_dim=1024, mlp_dist='mse', image_dist='mse'): | |
super().__init__() | |
self._embed_dim = embed_dim | |
self._shapes = shapes | |
self.cnn_keys = [ | |
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] | |
self.mlp_keys = [ | |
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] | |
print('Decoder CNN outputs:', list(self.cnn_keys)) | |
print('Decoder MLP outputs:', list(self.mlp_keys)) | |
self._act = get_act(act) | |
self._norm = norm | |
self._cnn_depth = cnn_depth | |
self._cnn_kernels = cnn_kernels | |
self._mlp_layers = mlp_layers | |
self.channels = {k: self._shapes[k][0] for k in self.cnn_keys} | |
self._mlp_dist = mlp_dist | |
self._image_dist = image_dist | |
if len(self.cnn_keys) > 0: | |
self._conv_in = nn.Sequential(nn.Linear(embed_dim, 32*self._cnn_depth)) | |
self._conv_model = [] | |
for i, kernel in enumerate(self._cnn_kernels): | |
if i == 0: | |
prev_depth = 32*self._cnn_depth | |
else: | |
prev_depth = 2 ** (len(self._cnn_kernels) - (i - 1) - 2) * self._cnn_depth | |
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth | |
act, norm = self._act, self._norm | |
# Last layer is dist layer | |
if i == len(self._cnn_kernels) - 1: | |
depth, act, norm = sum(self.channels.values()), nn.Identity(), 'none' | |
self._conv_model.append(nn.ConvTranspose2d(prev_depth, depth, kernel, stride=2)) | |
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm, depth)) | |
self._conv_model.append(act) | |
self._conv_model = nn.Sequential(*self._conv_model) | |
if len(self.mlp_keys) > 0: | |
self._mlp_model = [] | |
for i, width in enumerate(self._mlp_layers): | |
if i == 0: | |
prev_width = embed_dim | |
else: | |
prev_width = self._mlp_layers[i-1] | |
self._mlp_model.append(nn.Linear(prev_width, width, bias=self._norm != 'none')) | |
self._mlp_model.append(NormLayer(self._norm, width)) | |
self._mlp_model.append(self._act) | |
self._mlp_model = nn.Sequential(*self._mlp_model) | |
for key, shape in { k : shapes[k] for k in self.mlp_keys }.items(): | |
self.add_module(f'dense_{key}', DistLayer(width, shape, dist=self._mlp_dist)) | |
def forward(self, features): | |
outputs = {} | |
if self.cnn_keys: | |
outputs.update(self._cnn(features)) | |
if self.mlp_keys: | |
outputs.update(self._mlp(features)) | |
return outputs | |
def _cnn(self, features): | |
x = self._conv_in(features) | |
x = x.reshape([-1, 32 * self._cnn_depth, 1, 1,]) | |
x = self._conv_model(x) | |
x = x.reshape(list(features.shape[:-1]) + list(x.shape[1:])) | |
if len(x.shape) == 5: | |
means = torch.split(x, list(self.channels.values()), 2) | |
else: | |
means = torch.split(x, list(self.channels.values()), 1) | |
image_dist = dict(mse=lambda x : MSEDist(x), normal_unit_std=lambda x : D.Independent(D.Normal(x, 1.0), 3))[self._image_dist] | |
dists = { key: image_dist(mean) for (key, shape), mean in zip(self.channels.items(), means)} | |
return dists | |
def _mlp(self, features): | |
shapes = {k: self._shapes[k] for k in self.mlp_keys} | |
x = features | |
x = self._mlp_model(x) | |
dists = {} | |
for key, shape in shapes.items(): | |
dists[key] = getattr(self, f'dense_{key}')(x) | |
return dists | |
class MLP(Module): | |
def __init__(self, in_shape, shape, layers, units, act='SiLU', norm='none', **out): | |
super().__init__() | |
self._in_shape = in_shape | |
if out['dist'] == 'twohot': | |
shape = 255 | |
self._shape = (shape,) if isinstance(shape, int) else shape | |
self._layers = layers | |
self._units = units | |
self._norm = norm | |
self._act = get_act(act) | |
self._out = out | |
last_units = in_shape | |
for index in range(self._layers): | |
self.add_module(f'dense{index}', nn.Linear(last_units, units, bias=norm != 'none')) | |
self.add_module(f'norm{index}', NormLayer(norm, units)) | |
last_units = units | |
self._out = DistLayer(units, shape, **out) | |
def forward(self, features): | |
x = features | |
x = x.reshape([-1, x.shape[-1]]) | |
for index in range(self._layers): | |
x = getattr(self, f'dense{index}')(x) | |
x = getattr(self, f'norm{index}')(x) | |
x = self._act(x) | |
x = x.reshape(list(features.shape[:-1]) + [x.shape[-1]]) | |
return self._out(x) | |
class GRUCell(Module): | |
def __init__(self, inp_size, size, norm=False, act='Tanh', update_bias=-1, device='cuda', **kwargs): | |
super().__init__() | |
self._inp_size = inp_size | |
self._size = size | |
self._act = get_act(act) | |
self._norm = norm | |
self._update_bias = update_bias | |
self.device = device | |
self._layer = nn.Linear(inp_size + size, 3 * size, bias=(not norm), **kwargs) | |
if norm: | |
self._norm = nn.LayerNorm(3*size) | |
def get_initial_state(self, inputs=None, batch_size=None, dtype=None): | |
return torch.zeros((batch_size), self._size, device=self.device) | |
def state_size(self): | |
return self._size | |
def forward(self, inputs, deter_state): | |
""" | |
inputs : non-linear combination of previous stoch and action | |
deter_state : prev hidden state of the cell | |
""" | |
deter_state = deter_state[0] # State is wrapped in a list. | |
parts = self._layer(torch.cat([inputs, deter_state], -1)) | |
if self._norm: | |
parts = self._norm(parts) | |
reset, cand, update = torch.chunk(parts, 3, -1) | |
reset = torch.sigmoid(reset) | |
cand = self._act(reset * cand) | |
update = torch.sigmoid(update + self._update_bias) | |
output = update * cand + (1 - update) * deter_state | |
return output, [output] | |
class DistLayer(Module): | |
def __init__( | |
self, in_dim, shape, dist='mse', min_std=0.1, max_std=1.0, init_std=0.0, bias=True): | |
super().__init__() | |
self._in_dim = in_dim | |
self._shape = shape if type(shape) in [list,tuple] else [shape] | |
self._dist = dist | |
self._min_std = min_std | |
self._init_std = init_std | |
self._max_std = max_std | |
self._out = nn.Linear(in_dim, int(np.prod(shape)) , bias=bias) | |
if dist in ('normal', 'tanh_normal', 'trunc_normal'): | |
self._std = nn.Linear(in_dim, int(np.prod(shape)) ) | |
def forward(self, inputs): | |
out = self._out(inputs) | |
out = out.reshape(list(inputs.shape[:-1]) + list(self._shape)) | |
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'): | |
std = self._std(inputs) | |
std = std.reshape(list(inputs.shape[:-1]) + list(self._shape)) | |
if self._dist == 'mse': | |
return MSEDist(out,) | |
if self._dist == 'normal_unit_std': | |
dist = D.Normal(out, 1.0) | |
dist.sample = dist.rsample | |
return D.Independent(dist, len(self._shape)) | |
if self._dist == 'normal': | |
mean = torch.tanh(out) | |
std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std | |
dist = D.Normal(mean, std) | |
dist.sample = dist.rsample | |
return D.Independent(dist, len(self._shape)) | |
if self._dist == 'binary': | |
out = torch.sigmoid(out) | |
dist = BernoulliDist(out) | |
return D.Independent(dist, len(self._shape)) | |
if self._dist == 'tanh_normal': | |
mean = 5 * torch.tanh(out / 5) | |
std = F.softplus(std + self._init_std) + self._min_std | |
dist = utils.SquashedNormal(mean, std) | |
dist = D.Independent(dist, len(self._shape)) | |
return SampleDist(dist) | |
if self._dist == 'trunc_normal': | |
mean = torch.tanh(out) | |
std = 2 * torch.sigmoid((std + self._init_std) / 2) + self._min_std | |
dist = utils.TruncatedNormal(mean, std) | |
return D.Independent(dist, 1) | |
if self._dist == 'onehot': | |
return OneHotDist(out.float()) | |
if self._dist == 'twohot': | |
return TwoHotDist(out.float()) | |
if self._dist == 'symlog_mse': | |
return SymlogDist(out, len(self._shape), 'mse') | |
raise NotImplementedError(self._dist) | |
class NormLayer(Module): | |
def __init__(self, name, dim=None): | |
super().__init__() | |
if name == 'none': | |
self._layer = None | |
elif name == 'layer': | |
assert dim != None | |
self._layer = nn.LayerNorm(dim) | |
else: | |
raise NotImplementedError(name) | |
def forward(self, features): | |
if self._layer is None: | |
return features | |
return self._layer(features) | |
def get_act(name): | |
if name == 'none': | |
return nn.Identity() | |
elif hasattr(nn, name): | |
return getattr(nn, name)() | |
else: | |
raise NotImplementedError(name) | |
class Optimizer: | |
def __init__( | |
self, name, parameters, lr, eps=1e-4, clip=None, wd=None, | |
opt='adam', wd_pattern=r'.*', use_amp=False): | |
assert 0 <= wd < 1 | |
assert not clip or 1 <= clip | |
self._name = name | |
self._clip = clip | |
self._wd = wd | |
self._wd_pattern = wd_pattern | |
self._opt = { | |
'adam': lambda: torch.optim.Adam(parameters, lr, eps=eps), | |
'nadam': lambda: torch.optim.Nadam(parameters, lr, eps=eps), | |
'adamax': lambda: torch.optim.Adamax(parameters, lr, eps=eps), | |
'sgd': lambda: torch.optim.SGD(parameters, lr), | |
'momentum': lambda: torch.optim.SGD(lr, momentum=0.9), | |
}[opt]() | |
self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp) | |
self._once = True | |
def __call__(self, loss, params): | |
params = list(params) | |
assert len(loss.shape) == 0 or (len(loss.shape) == 1 and loss.shape[0] == 1), (self._name, loss.shape) | |
metrics = {} | |
# Count parameters. | |
if self._once: | |
count = sum(p.numel() for p in params if p.requires_grad) | |
print(f'Found {count} {self._name} parameters.') | |
self._once = False | |
# Check loss. | |
metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy() | |
# Compute scaled gradient. | |
self._scaler.scale(loss).backward() | |
self._scaler.unscale_(self._opt) | |
# Gradient clipping. | |
if self._clip: | |
norm = torch.nn.utils.clip_grad_norm_(params, self._clip) | |
metrics[f'{self._name}_grad_norm'] = norm.item() | |
# Weight decay. | |
if self._wd: | |
self._apply_weight_decay(params) | |
# # Apply gradients. | |
self._scaler.step(self._opt) | |
self._scaler.update() | |
self._opt.zero_grad() | |
return metrics | |
def _apply_weight_decay(self, varibs): | |
nontrivial = (self._wd_pattern != r'.*') | |
if nontrivial: | |
raise NotImplementedError('Non trivial weight decay') | |
else: | |
for var in varibs: | |
var.data = (1 - self._wd) * var.data | |
class StreamNorm: | |
def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8, device='cuda'): | |
# Momentum of 0 normalizes only based on the current batch. | |
# Momentum of 1 disables normalization. | |
self.device = device | |
self._shape = tuple(shape) | |
self._momentum = momentum | |
self._scale = scale | |
self._eps = eps | |
self.mag = None # torch.ones(shape).to(self.device) | |
self.step = 0 | |
self.mean = None # torch.zeros(shape).to(self.device) | |
self.square_mean = None # torch.zeros(shape).to(self.device) | |
def reset(self): | |
self.step = 0 | |
self.mag = None # torch.ones_like(self.mag).to(self.device) | |
self.mean = None # torch.zeros_like(self.mean).to(self.device) | |
self.square_mean = None # torch.zeros_like(self.square_mean).to(self.device) | |
def __call__(self, inputs): | |
metrics = {} | |
self.update(inputs) | |
metrics['mean'] = inputs.mean() | |
metrics['std'] = inputs.std() | |
outputs = self.transform(inputs) | |
metrics['normed_mean'] = outputs.mean() | |
metrics['normed_std'] = outputs.std() | |
return outputs, metrics | |
def update(self, inputs): | |
self.step += 1 | |
batch = inputs.reshape((-1,) + self._shape) | |
mag = torch.abs(batch).mean(0) | |
if self.mag is not None: | |
self.mag.data = self._momentum * self.mag.data + (1 - self._momentum) * mag | |
else: | |
self.mag = mag.clone().detach() | |
mean = torch.mean(batch) | |
if self.mean is not None: | |
self.mean.data = self._momentum * self.mean.data + (1 - self._momentum) * mean | |
else: | |
self.mean = mean.clone().detach() | |
square_mean = torch.mean(batch * batch) | |
if self.square_mean is not None: | |
self.square_mean.data = self._momentum * self.square_mean.data + (1 - self._momentum) * square_mean | |
else: | |
self.square_mean = square_mean.clone().detach() | |
def transform(self, inputs): | |
if self._momentum == 1: | |
return inputs | |
values = inputs.reshape((-1,) + self._shape) | |
values /= self.mag[None] + self._eps | |
values *= self._scale | |
return values.reshape(inputs.shape) | |
def corrected_mean_var_std(self,): | |
corr = 1 # 1 - self._momentum ** self.step # NOTE: this led to exploding values for first few iterations | |
corr_mean = self.mean / corr | |
corr_var = (self.square_mean / corr) - self.mean ** 2 | |
corr_std = torch.sqrt(torch.maximum(corr_var, torch.zeros_like(corr_var, device=self.device)) + self._eps) | |
return corr_mean, corr_var, corr_std | |
class RequiresGrad: | |
def __init__(self, model): | |
self._model = model | |
def __enter__(self): | |
self._model.requires_grad_(requires_grad=True) | |
def __exit__(self, *args): | |
self._model.requires_grad_(requires_grad=False) | |
class RewardEMA: | |
"""running mean and std""" | |
def __init__(self, device, alpha=1e-2): | |
self.device = device | |
self.alpha = alpha | |
self.range = torch.tensor([0.05, 0.95]).to(device) | |
def __call__(self, x, ema_vals): | |
flat_x = torch.flatten(x.detach()) | |
x_quantile = torch.quantile(input=flat_x, q=self.range) | |
# this should be in-place operation | |
ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals | |
scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0) | |
offset = ema_vals[0] | |
return offset.detach(), scale.detach() | |
class ImgChLayerNorm(nn.Module): | |
def __init__(self, ch, eps=1e-03): | |
super(ImgChLayerNorm, self).__init__() | |
self.norm = torch.nn.LayerNorm(ch, eps=eps) | |
def forward(self, x): | |
x = x.permute(0, 2, 3, 1) | |
x = self.norm(x) | |
x = x.permute(0, 3, 1, 2) | |
return x |