Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from timm.models.registry import register_model | |
from torch import nn | |
import torch.utils.checkpoint as checkpoint | |
from functools import partial | |
from einops import rearrange | |
from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed | |
from .flash_attention_class import FlashAttention | |
from flash_attn.modules.mlp import FusedMLP | |
from flash_attn.ops.rms_norm import DropoutAddRMSNorm | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | |
proj_drop=0., attn_head_dim=None, out_dim=None): | |
super().__init__() | |
if out_dim is None: | |
out_dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
assert all_head_dim == dim | |
self.q = nn.Linear(dim, all_head_dim, bias=False) | |
self.k = nn.Linear(dim, all_head_dim, bias=False) | |
self.v = nn.Linear(dim, all_head_dim, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.k_bias = None | |
self.v_bias = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, out_dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, k=None, v=None): | |
B, N, C = x.shape | |
N_k = k.shape[1] | |
N_v = v.shape[1] | |
q_bias, k_bias, v_bias = None, None, None | |
if self.q_bias is not None: | |
q_bias = self.q_bias | |
k_bias = self.k_bias | |
v_bias = self.v_bias | |
q = F.linear(input=x, weight=self.q.weight, bias=q_bias) | |
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim) | |
k = F.linear(input=k, weight=self.k.weight, bias=k_bias) | |
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) | |
v = F.linear(input=v, weight=self.v.weight, bias=v_bias) | |
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class AttentiveBlock(nn.Module): | |
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): | |
super().__init__() | |
self.norm1_q = norm_layer(dim) | |
self.norm1_k = norm_layer(dim) | |
self.norm1_v = norm_layer(dim) | |
self.cross_attn = CrossAttention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, | |
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): | |
x_q = self.norm1_q(x_q + pos_q) | |
x_k = self.norm1_k(x_kv + pos_k) | |
x_v = self.norm1_v(x_kv) | |
x = self.cross_attn(x_q, k=x_k, v=x_v) | |
return x | |
class AttentionPoolingBlock(AttentiveBlock): | |
def forward(self, x): | |
x_q = x.mean(1, keepdim=True) | |
x_kv, pos_q, pos_k = x, 0, 0 | |
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) | |
x = x.squeeze(1) | |
return x | |
class RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
self.force_fp32 = force_fp32 | |
def forward(self, x): | |
if self.force_fp32: | |
output_type = x.dtype | |
out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float() | |
return out.to(dtype=output_type) | |
else: | |
out = x.mul_(self.gamma) if self.inplace else x * self.gamma | |
return out | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, | |
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): | |
super().__init__() | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.use_flash_attn = use_flash_attn | |
if use_flash_attn: | |
self.causal = causal | |
self.inner_attn = FlashAttention(attention_dropout=attn_drop) | |
self.qk_normalization = qk_normalization | |
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() | |
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() | |
self.use_fused_rmsnorm = use_fused_rmsnorm | |
def _naive_attn(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
if self.qk_normalization: | |
B_, H_, N_, D_ = q.shape | |
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
attn = ((q * self.scale) @ k.transpose(-2, -1)) | |
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16 | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): | |
qkv = self.qkv(x) | |
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) | |
if self.qk_normalization: | |
q, k, v = qkv.unbind(2) | |
if self.use_fused_rmsnorm: | |
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) | |
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) | |
else: | |
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) | |
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) | |
qkv = torch.stack([q, k, v], dim=2) | |
context, _ = self.inner_attn( | |
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal | |
) | |
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) | |
outs = self.proj_drop(outs) | |
return outs | |
def forward(self, x): | |
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) | |
return x | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, | |
bias=True, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
bias = to_2tuple(bias) | |
drop_probs = to_2tuple(drop) | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs[0]) | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) | |
self.drop2 = nn.Dropout(drop_probs[1]) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, | |
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, | |
use_fused_rmsnorm=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | |
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, | |
qk_normalization=qk_normalization, | |
use_fused_rmsnorm=use_fused_rmsnorm) | |
self.ls1 = LayerScale(dim, init_values=init_values, | |
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
if use_fused_mlp: | |
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) | |
else: | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.ls2 = LayerScale(dim, init_values=init_values, | |
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.with_cp = with_cp | |
self.use_fused_rmsnorm = use_fused_rmsnorm | |
def forward(self, x, residual=None): | |
def _inner_forward(x, residual=None): | |
if self.use_fused_rmsnorm: | |
x, residual = self.norm1(x, residual) | |
x = self.drop_path1(self.ls1(self.attn(x))) | |
x, residual = self.norm2(x, residual) | |
x = self.drop_path2(self.ls2(self.mlp(x))) | |
return x, residual | |
else: | |
assert residual is None | |
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
if self.with_cp: | |
return checkpoint.checkpoint(_inner_forward, x, residual) | |
else: | |
return _inner_forward(x, residual=residual) | |
class PatchEmbed(nn.Module): | |
""" 3D Image to Patch Embedding | |
""" | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, | |
num_frames=8, tubelet_size=1, norm_layer=None | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = ( | |
num_frames // tubelet_size, | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1] | |
) # (T, H, W) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] | |
self.proj = nn.Conv3d( | |
in_channels=in_chans, out_channels=embed_dim, | |
kernel_size=(tubelet_size, patch_size[0], patch_size[1]), | |
stride=(tubelet_size, patch_size[0], patch_size[1]) | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C | |
x = self.norm(x) | |
return x | |
class Linear_Decoder(nn.Module): | |
def __init__(self, in_channels=1408, out_channels=3200, | |
norm_layer=nn.LayerNorm, norm_type='l2'): | |
super().__init__() | |
self.norm_type = norm_type | |
print(f'Normalization Type: {norm_type}') | |
self.head = nn.Linear(in_channels, out_channels) | |
self.norm = norm_layer(out_channels) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.norm(self.head(x)) | |
if self.norm_type == 'l2': | |
x = x / x.norm(dim=-1, keepdim=True) | |
elif self.norm_type == 'none': | |
pass | |
else: | |
raise NotImplementedError | |
return x | |
class MLP_Decoder(nn.Module): | |
def __init__(self, in_channels=768, out_channels=768, | |
norm_layer=nn.LayerNorm, norm_type='l2'): | |
super().__init__() | |
self.norm_type = norm_type | |
print(f'Normalization Type: {norm_type}') | |
self.head = nn.Sequential( | |
nn.Linear(in_channels, in_channels), | |
nn.GELU(), | |
nn.Linear(in_channels, out_channels) | |
) | |
self.norm = norm_layer(out_channels) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.norm(self.head(x)) | |
if self.norm_type == 'l2': | |
x = x / x.norm(dim=-1, keepdim=True) | |
elif self.norm_type == 'none': | |
pass | |
else: | |
raise NotImplementedError | |
return x | |
class PretrainInternVideo2(nn.Module): | |
def __init__( | |
self, | |
in_chans: int = 3, | |
patch_size: int = 14, | |
img_size: int = 224, | |
qkv_bias: bool = False, | |
drop_path_rate: float = 0.25, | |
embed_dim: int = 1408, | |
num_heads: int = 16, | |
mlp_ratio: float = 4.3637, | |
init_values: float = 1e-5, | |
qk_normalization: bool = True, | |
depth: int = 40, | |
use_flash_attn: bool = True, | |
use_fused_rmsnorm: bool = True, | |
use_fused_mlp: bool = True, | |
fused_mlp_heuristic: int = 1, | |
attn_pool_num_heads: int = 16, | |
clip_embed_dim: int = 768, | |
layerscale_no_force_fp32: bool = False, | |
num_frames: int = 8, | |
tubelet_size: int = 1, | |
sep_pos_embed: bool = False, | |
use_checkpoint: bool = False, | |
checkpoint_num: int = 0, | |
# for clip | |
clip_teacher_embed_dim: int = 3200, | |
clip_teacher_final_dim: int = 768, # if 0, not distill final features | |
clip_norm_type: str = 'l2', | |
clip_return_layer: int = 1, | |
clip_student_return_interval: int = 1, | |
# for mae | |
mae_teacher_embed_dim: int = 1408, | |
mae_norm_type: str = 'l2', | |
mae_return_layer: int = 1, | |
mae_student_return_interval: int = 1, | |
): | |
super().__init__() | |
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print( | |
'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent') | |
self.use_flash_attn = use_flash_attn | |
self.embed_dim = embed_dim | |
self.clip_norm_type = clip_norm_type | |
self.clip_return_index = [] | |
for i in range(clip_return_layer): | |
self.clip_return_index.append(depth - int(i * clip_student_return_interval) - 1) | |
print(f'CLIP Normalization Type: {clip_norm_type}') | |
print(f'CLIP Strudent Return Index: {self.clip_return_index}') | |
self.mae_norm_type = mae_norm_type | |
self.mae_return_index = [] | |
for i in range(mae_return_layer): | |
self.mae_return_index.append(depth - int(i * mae_student_return_interval) - 1) | |
print(f'MAE Normalization Type: {mae_norm_type}') | |
print(f'MAE Strudent Return Index: {self.mae_return_index}') | |
if use_fused_rmsnorm: | |
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) | |
else: | |
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) | |
self.norm_layer_for_blocks = norm_layer_for_blocks | |
self.patch_embed = PatchEmbed( | |
img_size, patch_size, in_chans, embed_dim, | |
num_frames=num_frames, tubelet_size=tubelet_size, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17 | |
self.sep_pos_embed = sep_pos_embed | |
if sep_pos_embed: | |
print("Use seperable position embedding") | |
grid_size = self.patch_embed.grid_size | |
self.grid_size = grid_size | |
self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) | |
self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) | |
self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# for CLIP decoder | |
self.clip_pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) | |
self.clip_pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) | |
self.clip_pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# for MAE decoder | |
self.mae_pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) | |
self.mae_pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) | |
else: | |
print("Use joint position embedding") | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
# for CLIP decoder | |
self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
# for MAE decoder | |
self.mae_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
# choose which layer to use checkpoint | |
with_cp_list = [False] * depth | |
if use_checkpoint: | |
for idx in range(depth): | |
if idx < checkpoint_num: | |
with_cp_list[idx] = True | |
print(f"Droppath rate: {dpr}") | |
print(f"Checkpoint list: {with_cp_list}") | |
self.blocks = nn.ModuleList([ | |
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, | |
norm_layer=norm_layer_for_blocks, | |
drop_path=dpr[i], init_values=init_values, attn_drop=0., | |
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, | |
fused_mlp_heuristic=fused_mlp_heuristic, | |
with_cp=with_cp_list[i], | |
qk_normalization=qk_normalization, | |
layerscale_no_force_fp32=layerscale_no_force_fp32, | |
use_fused_rmsnorm=use_fused_rmsnorm) | |
for i in range(depth)]) | |
self.clip_projector = AttentionPoolingBlock( | |
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, | |
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) | |
# CLIP decoder | |
self.clip_decoder = nn.ModuleList([ | |
Linear_Decoder( | |
in_channels=embed_dim, | |
out_channels=clip_teacher_embed_dim, | |
norm_layer=partial(nn.LayerNorm, eps=1e-5), | |
norm_type=clip_norm_type | |
) for _ in range(clip_return_layer) | |
]) | |
self.final_clip_decoder = nn.Identity() | |
if clip_teacher_final_dim > 0: | |
self.final_clip_decoder = Linear_Decoder( | |
in_channels=clip_embed_dim, | |
out_channels=clip_teacher_final_dim, | |
norm_layer=partial(nn.LayerNorm, eps=1e-5), | |
norm_type=clip_norm_type | |
) | |
# MAE decoder | |
self.mae_decoder = nn.ModuleList([ | |
MLP_Decoder( | |
in_channels=embed_dim, | |
out_channels=mae_teacher_embed_dim, | |
norm_layer=partial(nn.LayerNorm, eps=1e-5), | |
norm_type=mae_norm_type | |
) for _ in range(mae_return_layer) | |
]) | |
self.init_pos_embed() | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
self.fix_init_weight() | |
def init_pos_embed(self): | |
print("Init pos_embed from sincos pos_embed") | |
if self.sep_pos_embed: | |
pos_embed_spatial = get_2d_sincos_pos_embed( | |
self.pos_embed_spatial.shape[-1], | |
self.patch_embed.grid_size[1], # height & weight | |
) | |
self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) | |
self.clip_pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) | |
self.mae_pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) | |
pos_embed_temporal = get_1d_sincos_pos_embed( | |
self.pos_embed_spatial.shape[-1], | |
self.patch_embed.grid_size[0], # t_size | |
) | |
self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) | |
self.clip_pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) | |
self.mae_pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) | |
else: | |
pos_embed = get_3d_sincos_pos_embed( | |
self.pos_embed.shape[-1], | |
self.patch_embed.grid_size[1], # height & weight | |
self.patch_embed.grid_size[0], # t_size | |
cls_token=True | |
) | |
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
self.mae_pos_embed.data.copy_(torch.from_numpy(pos_embed[1:]).float().unsqueeze(0)) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def dtype(self): | |
return self.patch_embed.proj.weight.dtype | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return { | |
'pos_embed', | |
'pos_embed_spatial', | |
'pos_embed_temporal', | |
'pos_embed_cls', | |
'cls_token', | |
'clip_pos_embed', | |
'clip_pos_embed_spatial', | |
'clip_pos_embed_temporal', | |
'clip_pos_embed_cls', | |
'mae_pos_embed', | |
'mae_pos_embed_spatial', | |
'mae_pos_embed_temporal', | |
} | |
def forward(self, x, mask): | |
x = self.patch_embed(x.type(self.dtype)) | |
B, T, L, C = x.shape # T: temporal; L: spatial | |
x = x.view([B, T * L, C]) | |
# append cls token | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
# add pos_embed | |
if self.sep_pos_embed: | |
pos_embed = self.pos_embed_spatial.repeat( | |
1, self.grid_size[0], 1 | |
) + torch.repeat_interleave( | |
self.pos_embed_temporal, | |
self.grid_size[1] * self.grid_size[2], | |
dim=1, | |
) | |
pos_embed = torch.cat( | |
[ | |
self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1), | |
pos_embed, | |
], | |
1, | |
) | |
else: | |
pos_embed = self.pos_embed | |
x = x + pos_embed | |
# mask tokens, ~mask means visible | |
x = x[~mask].reshape(B, -1, C) | |
residual = None | |
x_clip = [] | |
x_mae = [] | |
for idx, blk in enumerate(self.blocks): | |
if isinstance(x, tuple) and len(x) == 2: | |
x, residual = x | |
x = blk(x, residual=residual) | |
# return intermediate features for CLIP | |
if idx in self.clip_return_index: | |
if isinstance(x, tuple) and len(x) == 2: | |
tmp_x, tmp_residual = x | |
if residual is not None: | |
x_clip.append(tmp_x + tmp_residual) | |
else: | |
x_clip.append(x) | |
# return intermediate features for MAE | |
if idx in self.mae_return_index: | |
if isinstance(x, tuple) and len(x) == 2: | |
tmp_x, tmp_residual = x | |
if residual is not None: | |
x_mae.append((tmp_x + tmp_residual)[:, 1:]) | |
else: | |
x_mae.append(x[:, 1:]) | |
if isinstance(x, tuple) and len(x) == 2: | |
x, residual = x | |
if residual is not None: | |
x = x + residual | |
x = self.clip_projector(x) | |
# align CLIP | |
x_clip = torch.stack(x_clip) | |
K, B, _, C_CLIP = x_clip.shape | |
# add pos_embed | |
if self.sep_pos_embed: | |
clip_pos_embed = self.clip_pos_embed_spatial.repeat( | |
1, self.grid_size[0], 1 | |
) + torch.repeat_interleave( | |
self.clip_pos_embed_temporal, | |
self.grid_size[1] * self.grid_size[2], | |
dim=1, | |
) | |
clip_pos_embed = torch.cat( | |
[ | |
self.clip_pos_embed_cls.expand(clip_pos_embed.shape[0], -1, -1), | |
clip_pos_embed, | |
], | |
1, | |
) | |
else: | |
clip_pos_embed = self.clip_pos_embed | |
clip_pos_embed = clip_pos_embed.repeat(B, 1, 1) | |
x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) | |
# CLIP decoder | |
x_clip_align = [] | |
for idx, clip_decoder in enumerate(self.clip_decoder): | |
x_clip_align.append(clip_decoder(x_clip[idx])) | |
x_clip_align = torch.stack(x_clip_align) | |
x_align = self.final_clip_decoder(x) | |
# align MAE | |
x_mae = torch.stack(x_mae) | |
K, B, _, C_MAE = x_mae.shape | |
# add pos_embed | |
if self.sep_pos_embed: | |
mae_pos_embed = self.mae_pos_embed_spatial.repeat( | |
1, self.grid_size[0], 1 | |
) + torch.repeat_interleave( | |
self.mae_pos_embed_temporal, | |
self.grid_size[1] * self.grid_size[2], | |
dim=1, | |
) | |
else: | |
mae_pos_embed = self.mae_pos_embed | |
mae_pos_embed = mae_pos_embed.repeat(B, 1, 1) | |
x_mae = x_mae + mae_pos_embed[~mask[:, 1:]].view(B, -1, C_MAE).unsqueeze(0).repeat(K, 1, 1, 1) | |
# MAE decoder | |
x_mae_align = [] | |
for idx, mae_decoder in enumerate(self.mae_decoder): | |
x_mae_align.append(mae_decoder(x_mae[idx])) | |
x_mae_align = torch.stack(x_mae_align) | |
return x_clip_align, x_align, x_mae_align | |
def pretrain_internvideo2_1B_patch14_224(pretrained=False, **kwargs): | |
model = PretrainInternVideo2( | |
img_size=224, patch_size=14, embed_dim=1408, | |
depth=40, num_heads=16, mlp_ratio=48/11, | |
attn_pool_num_heads=16, clip_embed_dim=768, | |
**kwargs | |
) | |
return model | |
def pretrain_internvideo2_6B_patch14_224(pretrained=False, **kwargs): | |
model = PretrainInternVideo2( | |
img_size=224, patch_size=14, embed_dim=3200, | |
depth=48, num_heads=25, mlp_ratio=4, | |
attn_pool_num_heads=16, clip_embed_dim=768, | |
**kwargs | |
) | |
return model | |
if __name__ == '__main__': | |
import time | |
from fvcore.nn import FlopCountAnalysis | |
from fvcore.nn import flop_count_table | |
import numpy as np | |
seed = 4217 | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
num_frames = 8 | |
img_size = 224 | |
# model = pretrain_internvideo2_1B_patch14_224(clip_return_layer=6).cuda().half() | |
model = pretrain_internvideo2_6B_patch14_224(clip_return_layer=1).cuda().half() | |
# print(model) | |
# flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, img_size, img_size).cuda().half()) | |
# s = time.time() | |
# print(flop_count_table(flops, max_depth=1)) | |
# print(time.time()-s) | |
mask = torch.cat([ | |
torch.zeros(1, 1), | |
torch.ones(1, 8 * int(16 * 16 * 0.75)), | |
torch.zeros(1, 8 * int(16 * 16 * 0.25)), | |
], dim=-1).to(torch.bool).cuda() | |
output = model(torch.rand(4, 3, num_frames, img_size, img_size).cuda().half(), mask.repeat(4, 1)) | |
print(output[0].shape) | |
print(output[1].shape) | |