Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import os | |
import sys | |
import gradio as gr | |
# prototyping | |
# from demo_test import Text2Video, Video2Video | |
from demo.t2v import Text2Video | |
t2v_examples = [ | |
['walk fast clean',16,], | |
['run fast clean',16,], | |
['standing up',16], | |
['doing the splits',16], | |
['doing backflips',16], | |
['a headstand',16], | |
['karate kick',16], | |
['crunch abs',16], | |
['doing push ups',16], | |
] | |
def do_nothing(): | |
return | |
def demo(result_dir='./tmp/'): | |
text2video = Text2Video(result_dir) | |
# video2video = Video2Video(result_dir) | |
# tex | |
with gr.Blocks(analytics_enabled=False) as videocrafter_iface: | |
gr.Markdown("<div align='center'> \ | |
<h2> GenRL: Multimodal foundation world models for generalist embodied agents </h2> \ | |
<a style='font-size:18px;' href='https://github.com/mazpie/genrl'> [Github] </a> \ | |
\ | |
<a style='font-size:18px;' href='https://huggingface.co/mazpie/genrl_models'> [Models] </a> \ | |
\ | |
<a style='font-size:18px;' href='https://huggingface.co/datasets/mazpie/genrl_datasets'> [Datasets] </a> \ | |
</div> \ | |
<p align='center'> \ | |
<img src='https://huggingface.co/spaces/mazpie/genrl/resolve/main/assets/GenRL_fig1.png' width=90%> \ | |
</p>") | |
gr.Markdown("<b> Notes: </b>") | |
gr.Markdown("<b> - Low quality of the videos generated is expected, as the work focuses on visual-language alignment for behavior learning, not on video generation quality.</b>") | |
gr.Markdown("<b> - The model is trained on small 64x64 images, and the videos are generated only from a small 512-dimensional embedding. </b>") | |
gr.Markdown("<b> - Some prompts require styling instructions, e.g. fast, clean, in order to work well. See some of the examples. </b>") | |
#######t2v####### | |
with gr.Tab(label="Text2Video"): | |
with gr.Column(): | |
with gr.Row(): # .style(equal_height=False) | |
with gr.Column(): | |
input_text = gr.Text(label='prompt') | |
duration = gr.Slider(minimum=8, maximum=32, elem_id=f"duration", label="duration", value=16, step=8) | |
send_btn = gr.Button("Send") | |
with gr.Column(): # label='result', | |
pass | |
with gr.Column(): # label='result', | |
output_video_1 = gr.Video(autoplay=True, width=256, height=256) | |
with gr.Row(): | |
gr.Examples(examples=t2v_examples, | |
inputs=[input_text,duration], | |
outputs=[output_video_1], | |
fn=text2video.get_prompt, | |
cache_examples=False) | |
#cache_examples=os.getenv('SYSTEM') == 'spaces') | |
send_btn.click( | |
fn=text2video.get_prompt, | |
inputs=[input_text,duration], | |
outputs=[output_video_1], | |
) | |
input_text.submit( | |
fn=text2video.get_prompt, | |
inputs=[input_text,duration], | |
outputs=[output_video_1], | |
) | |
return videocrafter_iface | |
if __name__ == "__main__": | |
result_dir = os.path.join('./', 'results') | |
video_demo = demo(result_dir) | |
video_demo.queue() | |
video_demo.launch() |