Spaces:
Sleeping
Sleeping
Mazen Omar
commited on
Commit
Β·
727da9f
1
Parent(s):
9f876bb
Livine 2.0
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/main.cpython-310.pyc +0 -0
- __pycache__/main.cpython-311.pyc +0 -0
- __pycache__/model.cpython-310.pyc +0 -0
- app.py +8 -10
- class_names.txt +2 -1
- model.py +1 -1
- livine_mini_model.pth β model/model.pth +2 -2
__pycache__/app.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
__pycache__/app.cpython-311.pyc
ADDED
Binary file (2.76 kB). View file
|
|
__pycache__/main.cpython-310.pyc
ADDED
Binary file (583 Bytes). View file
|
|
__pycache__/main.cpython-311.pyc
ADDED
Binary file (752 Bytes). View file
|
|
__pycache__/model.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
### 1. Imports and class names setup ###
|
2 |
-
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
5 |
-
|
6 |
from model import create_effnetb2_model
|
7 |
from timeit import default_timer as timer
|
8 |
from typing import Tuple, Dict
|
@@ -15,18 +14,18 @@ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
|
|
15 |
|
16 |
# Create model
|
17 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
-
num_classes=
|
19 |
)
|
20 |
|
21 |
# Load saved weights
|
22 |
effnetb2.load_state_dict(
|
23 |
-
|
24 |
-
f="
|
25 |
-
map_location=torch.device("cpu"),
|
26 |
-
)
|
27 |
)
|
28 |
|
29 |
-
### 3. Predict function ###
|
30 |
|
31 |
# Create predict function
|
32 |
def predict(img) -> Tuple[Dict, float]:
|
@@ -40,7 +39,7 @@ def predict(img) -> Tuple[Dict, float]:
|
|
40 |
|
41 |
# Put model into evaluation mode and turn on inference mode
|
42 |
effnetb2.eval()
|
43 |
-
with torch.
|
44 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
45 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
46 |
|
@@ -55,7 +54,6 @@ def predict(img) -> Tuple[Dict, float]:
|
|
55 |
|
56 |
### 4. Gradio app ###
|
57 |
|
58 |
-
# Create title, description and article strings
|
59 |
title = "Livine Mini Model ππ"
|
60 |
|
61 |
# Create examples list from "examples/" directory
|
|
|
1 |
### 1. Imports and class names setup ###
|
|
|
2 |
import os
|
3 |
import torch
|
4 |
+
import gradio as gr
|
5 |
from model import create_effnetb2_model
|
6 |
from timeit import default_timer as timer
|
7 |
from typing import Tuple, Dict
|
|
|
14 |
|
15 |
# Create model
|
16 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
17 |
+
num_classes=102, # could also use len(class_names)
|
18 |
)
|
19 |
|
20 |
# Load saved weights
|
21 |
effnetb2.load_state_dict(
|
22 |
+
torch.load(
|
23 |
+
f="model/model.pth",
|
24 |
+
map_location=torch.device("cpu"),
|
25 |
+
)["model_state_dict"]
|
26 |
)
|
27 |
|
28 |
+
# ### 3. Predict function ###
|
29 |
|
30 |
# Create predict function
|
31 |
def predict(img) -> Tuple[Dict, float]:
|
|
|
39 |
|
40 |
# Put model into evaluation mode and turn on inference mode
|
41 |
effnetb2.eval()
|
42 |
+
with torch.no_grad():
|
43 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
44 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
45 |
|
|
|
54 |
|
55 |
### 4. Gradio app ###
|
56 |
|
|
|
57 |
title = "Livine Mini Model ππ"
|
58 |
|
59 |
# Create examples list from "examples/" directory
|
class_names.txt
CHANGED
@@ -65,6 +65,7 @@ macarons
|
|
65 |
miso_soup
|
66 |
mussels
|
67 |
nachos
|
|
|
68 |
omelette
|
69 |
onion_rings
|
70 |
oysters
|
@@ -98,4 +99,4 @@ tacos
|
|
98 |
takoyaki
|
99 |
tiramisu
|
100 |
tuna_tartare
|
101 |
-
waffles
|
|
|
65 |
miso_soup
|
66 |
mussels
|
67 |
nachos
|
68 |
+
not_food
|
69 |
omelette
|
70 |
onion_rings
|
71 |
oysters
|
|
|
99 |
takoyaki
|
100 |
tiramisu
|
101 |
tuna_tartare
|
102 |
+
waffles
|
model.py
CHANGED
@@ -4,7 +4,7 @@ import torchvision
|
|
4 |
from torch import nn
|
5 |
|
6 |
|
7 |
-
def create_effnetb2_model(num_classes:int=
|
8 |
seed:int=42):
|
9 |
"""Creates an EfficientNetB2 feature extractor model and transforms.
|
10 |
|
|
|
4 |
from torch import nn
|
5 |
|
6 |
|
7 |
+
def create_effnetb2_model(num_classes:int=102,
|
8 |
seed:int=42):
|
9 |
"""Creates an EfficientNetB2 feature extractor model and transforms.
|
10 |
|
livine_mini_model.pth β model/model.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0afb84cd12c0ecc9cbc20a1538282ebc1f45d780cf6431f45ec62d4ff035986f
|
3 |
+
size 31836661
|