Spaces:
Runtime error
Runtime error
from huggingface_hub import hf_hub_download | |
Rain_Princess = hf_hub_download(repo_id="maze/FastStyleTransfer", filename="Rain_Princess.pth") | |
#modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit") | |
#modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit") | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class TransformerNetwork(nn.Module): | |
def __init__(self, tanh_multiplier=None): | |
super(TransformerNetwork, self).__init__() | |
self.ConvBlock = nn.Sequential( | |
ConvLayer(3, 32, 9, 1), | |
nn.ReLU(), | |
ConvLayer(32, 64, 3, 2), | |
nn.ReLU(), | |
ConvLayer(64, 128, 3, 2), | |
nn.ReLU() | |
) | |
self.ResidualBlock = nn.Sequential( | |
ResidualLayer(128, 3), | |
ResidualLayer(128, 3), | |
ResidualLayer(128, 3), | |
ResidualLayer(128, 3), | |
ResidualLayer(128, 3) | |
) | |
self.DeconvBlock = nn.Sequential( | |
DeconvLayer(128, 64, 3, 2, 1), | |
nn.ReLU(), | |
DeconvLayer(64, 32, 3, 2, 1), | |
nn.ReLU(), | |
ConvLayer(32, 3, 9, 1, norm="None") | |
) | |
self.tanh_multiplier = tanh_multiplier | |
def forward(self, x): | |
x = self.ConvBlock(x) | |
x = self.ResidualBlock(x) | |
x = self.DeconvBlock(x) | |
if isinstance(self.tanh_multiplier, int): | |
x = self.tanh_multiplier * F.tanh(x) | |
return x | |
class ConvLayer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"): | |
super(ConvLayer, self).__init__() | |
padding_size = kernel_size // 2 | |
self.pad = nn.ReflectionPad2d(padding_size) | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) | |
if norm == "instance": | |
self.norm = nn.InstanceNorm2d(out_channels, affine=True) | |
elif norm == "batch": | |
self.norm = nn.BatchNorm2d(out_channels, affine=True) | |
else: | |
self.norm = nn.Identity() | |
def forward(self, x): | |
x = self.pad(x) | |
x = self.conv(x) | |
x = self.norm(x) | |
return x | |
class ResidualLayer(nn.Module): | |
def __init__(self, channels=128, kernel_size=3): | |
super(ResidualLayer, self).__init__() | |
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1) | |
self.relu = nn.ReLU() | |
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1) | |
def forward(self, x): | |
identity = x | |
out = self.relu(self.conv1(x)) | |
out = self.conv2(out) | |
out = out + identity | |
return out | |
class DeconvLayer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"): | |
super(DeconvLayer, self).__init__() | |
padding_size = kernel_size // 2 | |
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding) | |
if norm == "instance": | |
self.norm = nn.InstanceNorm2d(out_channels, affine=True) | |
elif norm == "batch": | |
self.norm = nn.BatchNorm2d(out_channels, affine=True) | |
else: | |
self.norm = nn.Identity() | |
def forward(self, x): | |
x = self.conv_transpose(x) | |
out = self.norm(x) | |
return out | |
mean = np.array([0.485, 0.456, 0.406]) | |
std = np.array([0.229, 0.224, 0.225]) | |
transformer = TransformerNetwork().to(device) | |
transformer.eval() | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.ToTensor(), | |
transforms.Normalize(mean, std), | |
]) | |
denormalize = transforms.Normalize( | |
mean= [-m/s for m, s in zip(mean, std)], | |
std= [1/s for s in std] | |
) | |
tensor2Image = transforms.ToPILImage() | |
def process(image, model): | |
image = transform(image).to(device) | |
image = image.unsqueeze(dim=0) | |
image = denormalize(model(image)).cpu() | |
image = torch.clamp(image.squeeze(dim=0), 0, 1) | |
image = tensor2Image(image) | |
return image | |
def main(image, backbone, style): | |
transformer.load_state_dict(torch.load(Rain_Princess)) | |
image = Image.fromarray(image) | |
isize = image.size | |
image = process(image, transformer) | |
s = f"The output image ({str(image.size)}) is processed by {backbone} based on input image ({str(isize)}) . <br> Please <b>rate</b> the generated image through the <b>Flag</b> button below!" | |
return image, s | |
gr.Interface( | |
title = "Stylize", | |
description = "Image generated based on Fast Style Transfer", | |
fn = main, | |
inputs = [ | |
gr.inputs.Image(), | |
gr.inputs.Radio(["VGG19", "Robust ResNet50", "Standard ResNet50"], label="Backbone"), | |
gr.inputs.Dropdown(["The Scream", "Rain Princess"], type="value", default="Rain Princess", label="style") | |
], | |
outputs = [gr.outputs.Image(label="Stylized"), gr.outputs.HTML(label="Comment")], | |
# examples = [ | |
# [] | |
# ], | |
# live = True, # the interface will recalculate as soon as the user input changes. | |
allow_flagging = "manual", | |
flagging_options = ["Excellect", "Moderate", "Bad"], | |
flagging_dir = "flagged", | |
allow_screenshot = False, | |
).launch() | |
# iface.launch(enable_queue=True, cache_examples=True, debug=True) |