Update voice_processing.py
Browse files- voice_processing.py +78 -82
voice_processing.py
CHANGED
@@ -34,7 +34,7 @@ limitation = os.getenv("SYSTEM") == "spaces"
|
|
34 |
|
35 |
config = Config()
|
36 |
|
37 |
-
# Edge TTS
|
38 |
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
39 |
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
|
40 |
|
@@ -47,12 +47,13 @@ def get_unique_filename(extension):
|
|
47 |
return f"{uuid.uuid4()}.{extension}"
|
48 |
|
49 |
def model_data(model_name):
|
50 |
-
|
51 |
-
f"{model_root}/{model_name}
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
56 |
cpt = torch.load(pth_path, map_location="cpu")
|
57 |
tgt_sr = cpt["config"][-1]
|
58 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
@@ -72,25 +73,23 @@ def model_data(model_name):
|
|
72 |
raise ValueError("Unknown version")
|
73 |
del net_g.enc_q
|
74 |
net_g.load_state_dict(cpt["weight"], strict=False)
|
75 |
-
print("Model loaded")
|
76 |
net_g.eval().to(config.device)
|
77 |
if config.is_half:
|
78 |
net_g = net_g.half()
|
79 |
else:
|
80 |
net_g = net_g.float()
|
|
|
81 |
vc = VC(tgt_sr, config)
|
82 |
|
83 |
index_files = [
|
84 |
-
f"{model_root}/{model_name}
|
85 |
-
for f in os.listdir(f"{model_root}/{model_name}")
|
86 |
-
if f.endswith(".index")
|
87 |
]
|
88 |
-
if
|
89 |
-
|
90 |
-
index_file = ""
|
91 |
-
else:
|
92 |
-
index_file = index_files[0]
|
93 |
print(f"Index file found: {index_file}")
|
|
|
|
|
|
|
94 |
|
95 |
return tgt_sr, net_g, vc, version, index_file, if_f0
|
96 |
|
@@ -108,22 +107,17 @@ def load_hubert():
|
|
108 |
return hubert_model.eval()
|
109 |
|
110 |
def get_model_names():
|
111 |
-
model_root = "weights" # Assuming this is where your models are stored
|
112 |
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
loop.close()
|
120 |
-
return result
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
results = [future.result() for future in futures]
|
126 |
-
return results
|
127 |
|
128 |
async def tts(
|
129 |
model_name,
|
@@ -133,63 +127,65 @@ async def tts(
|
|
133 |
use_uploaded_voice,
|
134 |
uploaded_voice,
|
135 |
):
|
136 |
-
# Default values for parameters used in EdgeTTS
|
137 |
-
speed = 0 # Default speech speed
|
138 |
-
f0_up_key = 0 # Default pitch adjustment
|
139 |
-
f0_method = "rmvpe" # Default pitch extraction method
|
140 |
-
protect = 0.33 # Default protect value
|
141 |
-
filter_radius = 3
|
142 |
-
resample_sr = 0
|
143 |
-
rms_mix_rate = 0.25
|
144 |
-
edge_time = 0 # Initialize edge_time
|
145 |
-
|
146 |
-
edge_output_filename = get_unique_filename("mp3")
|
147 |
-
|
148 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
if use_uploaded_voice:
|
150 |
if uploaded_voice is None:
|
151 |
-
return "No voice file uploaded."
|
152 |
-
|
153 |
# Process the uploaded voice file
|
154 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
155 |
tmp_file.write(uploaded_voice)
|
156 |
-
|
157 |
|
158 |
-
audio, sr = librosa.load(
|
159 |
else:
|
160 |
-
#
|
|
|
|
|
|
|
161 |
if limitation and len(tts_text) > 12000:
|
162 |
-
return
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
# Invoke Edge TTS
|
169 |
-
t0 = time.time()
|
170 |
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
|
171 |
-
|
172 |
tts_text, tts_voice, rate=speed_str
|
173 |
-
)
|
|
|
|
|
|
|
174 |
t1 = time.time()
|
175 |
edge_time = t1 - t0
|
176 |
|
177 |
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
|
|
|
178 |
|
179 |
-
#
|
180 |
-
duration = len(audio) / sr
|
181 |
-
print(f"Audio duration: {duration}s")
|
182 |
-
if limitation and duration >= 20000:
|
183 |
-
return (
|
184 |
-
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
|
185 |
-
None,
|
186 |
-
None,
|
187 |
-
)
|
188 |
-
|
189 |
-
f0_up_key = int(f0_up_key)
|
190 |
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
|
191 |
|
192 |
-
#
|
193 |
if f0_method == "rmvpe":
|
194 |
vc.model_rmvpe = rmvpe_model
|
195 |
|
@@ -198,9 +194,9 @@ async def tts(
|
|
198 |
audio_opt = vc.pipeline(
|
199 |
hubert_model,
|
200 |
net_g,
|
201 |
-
0,
|
202 |
audio,
|
203 |
-
|
204 |
times,
|
205 |
f0_up_key,
|
206 |
f0_method,
|
@@ -218,25 +214,25 @@ async def tts(
|
|
218 |
|
219 |
if tgt_sr != resample_sr and resample_sr >= 16000:
|
220 |
tgt_sr = resample_sr
|
221 |
-
|
222 |
-
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
|
223 |
print(info)
|
224 |
-
return
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
229 |
|
230 |
except EOFError:
|
231 |
-
info =
|
232 |
-
"output not valid. This may occur when input text and speaker do not match."
|
233 |
-
)
|
234 |
print(info)
|
235 |
-
return
|
236 |
except Exception as e:
|
237 |
traceback_info = traceback.format_exc()
|
238 |
print(traceback_info)
|
239 |
-
return str(e)
|
|
|
240 |
|
241 |
voice_mapping = {
|
242 |
"Mongolian Male": "mn-MN-BataaNeural",
|
|
|
34 |
|
35 |
config = Config()
|
36 |
|
37 |
+
# Edge TTS voices
|
38 |
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
39 |
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
|
40 |
|
|
|
47 |
return f"{uuid.uuid4()}.{extension}"
|
48 |
|
49 |
def model_data(model_name):
|
50 |
+
pth_files = [
|
51 |
+
f for f in os.listdir(f"{model_root}/{model_name}") if f.endswith(".pth")
|
52 |
+
]
|
53 |
+
if not pth_files:
|
54 |
+
raise FileNotFoundError(f"No .pth file found for model '{model_name}'")
|
55 |
+
pth_path = f"{model_root}/{model_name}/{pth_files[0]}"
|
56 |
+
print(f"Loading model from {pth_path}")
|
57 |
cpt = torch.load(pth_path, map_location="cpu")
|
58 |
tgt_sr = cpt["config"][-1]
|
59 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
|
73 |
raise ValueError("Unknown version")
|
74 |
del net_g.enc_q
|
75 |
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
|
76 |
net_g.eval().to(config.device)
|
77 |
if config.is_half:
|
78 |
net_g = net_g.half()
|
79 |
else:
|
80 |
net_g = net_g.float()
|
81 |
+
print(f"Model '{model_name}' loaded.")
|
82 |
vc = VC(tgt_sr, config)
|
83 |
|
84 |
index_files = [
|
85 |
+
f for f in os.listdir(f"{model_root}/{model_name}") if f.endswith(".index")
|
|
|
|
|
86 |
]
|
87 |
+
if index_files:
|
88 |
+
index_file = f"{model_root}/{model_name}/{index_files[0]}"
|
|
|
|
|
|
|
89 |
print(f"Index file found: {index_file}")
|
90 |
+
else:
|
91 |
+
index_file = ""
|
92 |
+
print("No index file found.")
|
93 |
|
94 |
return tgt_sr, net_g, vc, version, index_file, if_f0
|
95 |
|
|
|
107 |
return hubert_model.eval()
|
108 |
|
109 |
def get_model_names():
|
|
|
110 |
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
|
111 |
|
112 |
+
# Voice mapping dictionary
|
113 |
+
voice_mapping = {
|
114 |
+
"Mongolian Male": "mn-MN-BataaNeural",
|
115 |
+
"Mongolian Female": "mn-MN-YesuiNeural"
|
116 |
+
}
|
|
|
|
|
117 |
|
118 |
+
# Load models once
|
119 |
+
hubert_model = load_hubert()
|
120 |
+
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|
|
|
|
|
121 |
|
122 |
async def tts(
|
123 |
model_name,
|
|
|
127 |
use_uploaded_voice,
|
128 |
uploaded_voice,
|
129 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
try:
|
131 |
+
# Validate inputs
|
132 |
+
if not tts_text.strip():
|
133 |
+
return {"success": False, "error": "Input text is empty."}
|
134 |
+
|
135 |
+
if tts_voice not in voice_mapping.values():
|
136 |
+
return {"success": False, "error": f"Invalid voice '{tts_voice}'."}
|
137 |
+
|
138 |
+
# Default parameters
|
139 |
+
f0_up_key = 0 # Pitch adjustment
|
140 |
+
f0_method = "rmvpe" # Pitch extraction method
|
141 |
+
protect = 0.33 # Protect value
|
142 |
+
filter_radius = 3
|
143 |
+
resample_sr = 0
|
144 |
+
rms_mix_rate = 0.25
|
145 |
+
edge_time = 0
|
146 |
+
|
147 |
+
audio = None
|
148 |
+
sr = 16000 # Sample rate
|
149 |
+
|
150 |
if use_uploaded_voice:
|
151 |
if uploaded_voice is None:
|
152 |
+
return {"success": False, "error": "No voice file uploaded."}
|
153 |
+
|
154 |
# Process the uploaded voice file
|
155 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
156 |
tmp_file.write(uploaded_voice)
|
157 |
+
input_audio_path = tmp_file.name
|
158 |
|
159 |
+
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
|
160 |
else:
|
161 |
+
# Edge TTS processing
|
162 |
+
edge_output_filename = get_unique_filename("mp3")
|
163 |
+
|
164 |
+
# Edge TTS limitations
|
165 |
if limitation and len(tts_text) > 12000:
|
166 |
+
return {
|
167 |
+
"success": False,
|
168 |
+
"error": f"Text characters should be at most 12000 in this huggingface space, but got {len(tts_text)} characters."
|
169 |
+
}
|
170 |
+
|
171 |
+
speed = 0 # Speech speed
|
|
|
|
|
172 |
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
|
173 |
+
communicate = edge_tts.Communicate(
|
174 |
tts_text, tts_voice, rate=speed_str
|
175 |
+
)
|
176 |
+
|
177 |
+
t0 = time.time()
|
178 |
+
await communicate.save(edge_output_filename)
|
179 |
t1 = time.time()
|
180 |
edge_time = t1 - t0
|
181 |
|
182 |
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
|
183 |
+
input_audio_path = edge_output_filename
|
184 |
|
185 |
+
# Load the specified RVC model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
|
187 |
|
188 |
+
# Set RMVPE model for pitch extraction
|
189 |
if f0_method == "rmvpe":
|
190 |
vc.model_rmvpe = rmvpe_model
|
191 |
|
|
|
194 |
audio_opt = vc.pipeline(
|
195 |
hubert_model,
|
196 |
net_g,
|
197 |
+
0, # Speaker ID
|
198 |
audio,
|
199 |
+
input_audio_path,
|
200 |
times,
|
201 |
f0_up_key,
|
202 |
f0_method,
|
|
|
214 |
|
215 |
if tgt_sr != resample_sr and resample_sr >= 16000:
|
216 |
tgt_sr = resample_sr
|
217 |
+
|
218 |
+
info = f"Success. Time: tts: {edge_time:.2f}s, npy: {times[0]:.2f}s, f0: {times[1]:.2f}s, infer: {times[2]:.2f}s"
|
219 |
print(info)
|
220 |
+
return {
|
221 |
+
"success": True,
|
222 |
+
"info": info,
|
223 |
+
"tgt_sr": tgt_sr,
|
224 |
+
"audio_opt": audio_opt
|
225 |
+
}
|
226 |
|
227 |
except EOFError:
|
228 |
+
info = "Output not valid. This may occur when input text and speaker do not match."
|
|
|
|
|
229 |
print(info)
|
230 |
+
return {"success": False, "error": info}
|
231 |
except Exception as e:
|
232 |
traceback_info = traceback.format_exc()
|
233 |
print(traceback_info)
|
234 |
+
return {"success": False, "error": str(e)}
|
235 |
+
|
236 |
|
237 |
voice_mapping = {
|
238 |
"Mongolian Male": "mn-MN-BataaNeural",
|