tts / voice_processing.py
MAZALA2024's picture
Update voice_processing.py
9d9e9c2 verified
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor
# import edge_tts # Commented out as we're not using Edge TTS
import librosa
import torch
from fairseq import checkpoint_utils
import uuid
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
model_cache = {}
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS voices
# tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
# tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]
# RVC models directory
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def get_unique_filename(extension):
return f"{uuid.uuid4()}.{extension}"
def model_data(model_name):
# We will not modify this function to cache models
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def get_model_names():
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
# Initialize the global models
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
# voice_mapping = {
# "Mongolian Male": "mn-MN-BataaNeural",
# "Mongolian Female": "mn-MN-YesuiNeural"
# }
# Function to run async functions in a new event loop within a thread
def run_async_in_thread(fn, *args):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(fn(*args))
loop.close()
return result
def parallel_tts(tasks):
with ThreadPoolExecutor(max_workers=10) as executor:
# futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks] # Original line
futures = [executor.submit(run_async_in_thread, process_audio, *task) for task in tasks] # New line
results = [future.result() for future in futures]
return results
# Keep the original tts function but commented out
'''
async def tts(
model_name,
tts_text,
tts_voice,
index_rate,
use_uploaded_voice,
uploaded_voice,
):
# Original TTS function code here
...
'''
# New function for audio processing only
async def process_audio(
model_name,
text_placeholder,
voice_placeholder,
index_rate,
use_uploaded_voice,
uploaded_voice,
):
# Default values for parameters
f0_up_key = 0
f0_method = "rmvpe"
protect = 0.33
filter_radius = 3
resample_sr = 0
rms_mix_rate = 0.25
try:
if uploaded_voice is None:
return "No voice file uploaded.", None, None
# Process the uploaded voice file - read the file instead of writing it
audio, sr = librosa.load(uploaded_voice, sr=16000, mono=True) # Load directly from filepath
duration = len(audio) / sr
print(f"Audio duration: {duration}s")
if limitation and duration >= 20000:
return (
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
None,
None,
)
# Load the model and process audio
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
if f0_method == "rmvpe":
vc.model_rmvpe = rmvpe_model
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
uploaded_voice, # Use the filepath directly
times,
f0_up_key,
f0_method,
index_file,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
if tgt_sr != resample_sr and resample_sr >= 16000:
tgt_sr = resample_sr
info = f"Success. Time: npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
print(info)
return (
info,
None,
(tgt_sr, audio_opt),
)
except Exception as e:
traceback_info = traceback.format_exc()
print(traceback_info)
return str(e), None, None