Spaces:
Runtime error
Runtime error
from flask import Flask, render_template, request | |
import random | |
import json | |
from keras.models import load_model | |
import numpy as np | |
import pickle | |
from nltk.stem import WordNetLemmatizer | |
import nltk | |
nltk.download('popular') | |
lemmatizer = WordNetLemmatizer() | |
model = load_model('model.h5') | |
intents = json.loads(open('data.json').read()) | |
words = pickle.load(open('texts.pkl', 'rb')) | |
classes = pickle.load(open('labels.pkl', 'rb')) | |
def clean_up_sentence(sentence): | |
# tokenize the pattern - split words into array | |
sentence_words = nltk.word_tokenize(sentence) | |
# stem each word - create short form for word | |
sentence_words = [lemmatizer.lemmatize( | |
word.lower()) for word in sentence_words] | |
return sentence_words | |
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence | |
def bow(sentence, words, show_details=True): | |
# tokenize the pattern | |
sentence_words = clean_up_sentence(sentence) | |
# bag of words - matrix of N words, vocabulary matrix | |
bag = [0]*len(words) | |
for s in sentence_words: | |
for i, w in enumerate(words): | |
if w == s: | |
# assign 1 if current word is in the vocabulary position | |
bag[i] = 1 | |
if show_details: | |
print("found in bag: %s" % w) | |
return (np.array(bag)) | |
def predict_class(sentence, model): | |
# filter out predictions below a threshold | |
p = bow(sentence, words, show_details=False) | |
res = model.predict(np.array([p]))[0] | |
ERROR_THRESHOLD = 0.25 | |
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD] | |
# sort by strength of probability | |
results.sort(key=lambda x: x[1], reverse=True) | |
return_list = [] | |
for r in results: | |
return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) | |
return return_list | |
def getResponse(ints, intents_json): | |
tag = ints[0]['intent'] | |
list_of_intents = intents_json['intents'] | |
for i in list_of_intents: | |
if (i['tag'] == tag): | |
result = random.choice(i['responses']) | |
break | |
return result | |
def chatbot_response(msg): | |
ints = predict_class(msg, model) | |
res = getResponse(ints, intents) | |
return res | |
app = Flask(__name__) | |
app.static_folder = 'static' | |
def home(): | |
return render_template("index.html") | |
def get_bot_response(): | |
userText = request.args.get('msg') | |
return chatbot_response(userText) | |
# if __name__ == "__main__": | |
# app.run() | |