Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,36 @@
|
|
| 1 |
-
import
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import plotly.express as px
|
| 5 |
import numpy as np
|
| 6 |
-
import
|
| 7 |
-
from ultralytics import YOLO
|
| 8 |
-
#from sahi.models.yolov8 import *
|
| 9 |
-
from src.sahi_onnx import *
|
| 10 |
from sahi.predict import get_sliced_prediction
|
| 11 |
from sahi.utils.cv import visualize_object_predictions
|
| 12 |
import PIL
|
| 13 |
|
| 14 |
-
|
| 15 |
-
model_base = 'onnx_models'
|
| 16 |
|
| 17 |
def inference(
|
| 18 |
im:gr.Image=None,
|
| 19 |
-
model_path:gr.Dropdown='YOLOv8n',
|
| 20 |
conf_thr:gr.Slider=0.25
|
| 21 |
):
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
category_mapping={'0': 'Boat'},
|
| 28 |
-
image_size=640)
|
| 29 |
|
| 30 |
res = get_sliced_prediction(im, model, slice_width=320,
|
| 31 |
slice_height=320, overlap_height_ratio=0.2,
|
| 32 |
overlap_width_ratio=0.2, verbose=0)
|
| 33 |
img = PIL.Image.open(im)
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
object_prediction_list=res.object_prediction_list,
|
| 36 |
-
text_size=0.4,
|
| 37 |
rect_th=1)
|
| 38 |
-
fig = px.imshow(visual_result['image'])
|
| 39 |
fig.update_layout(showlegend=False, hovermode=False)
|
| 40 |
fig.update_xaxes(visible=False)
|
| 41 |
fig.update_yaxes(visible=False)
|
|
@@ -43,15 +38,7 @@ def inference(
|
|
| 43 |
|
| 44 |
inputs = [
|
| 45 |
gr.Image(type='filepath', label='Input'),
|
| 46 |
-
gr.
|
| 47 |
-
'YOLOv8n',
|
| 48 |
-
'YOLOv8s',
|
| 49 |
-
'YOLOv8m',
|
| 50 |
-
'YOLOv8l',
|
| 51 |
-
'YOLOv8x'
|
| 52 |
-
],
|
| 53 |
-
value='YOLOv8n', label='Model'),
|
| 54 |
-
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label='Confidence Threshold'),
|
| 55 |
]
|
| 56 |
|
| 57 |
outputs = [
|
|
@@ -61,7 +48,6 @@ outputs = [
|
|
| 61 |
example_images = [[f'examples/{f}'] for f in os.listdir('examples')]
|
| 62 |
|
| 63 |
|
| 64 |
-
|
| 65 |
gr.Interface(
|
| 66 |
fn=inference,
|
| 67 |
inputs=inputs,
|
|
@@ -71,9 +57,9 @@ gr.Interface(
|
|
| 71 |
cache_examples=False,
|
| 72 |
examples_per_page=10,
|
| 73 |
title='Marine vessel detection from Sentinel 2 images',
|
| 74 |
-
description="""
|
| 75 |
-
Each example image covers 7.68x7.68 km (768x768 pixels).
|
|
|
|
| 76 |
As we don't clean the prediction with stationary targets that look like vessels in this resolution,
|
| 77 |
-
there will most likely be false positives from lighthouses, above-water rocks and on land
|
| 78 |
-
|
| 79 |
-
).launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import plotly.express as px
|
| 5 |
import numpy as np
|
| 6 |
+
from sahi.models.ultralytics import *
|
|
|
|
|
|
|
|
|
|
| 7 |
from sahi.predict import get_sliced_prediction
|
| 8 |
from sahi.utils.cv import visualize_object_predictions
|
| 9 |
import PIL
|
| 10 |
|
| 11 |
+
MODEL_PATH = 'yolo11s_tci.pt'
|
|
|
|
| 12 |
|
| 13 |
def inference(
|
| 14 |
im:gr.Image=None,
|
|
|
|
| 15 |
conf_thr:gr.Slider=0.25
|
| 16 |
):
|
| 17 |
+
model = UltralyticsDetectionModel(model_path=MODEL_PATH,
|
| 18 |
+
device='cuda',
|
| 19 |
+
confidence_threshold=conf_thr,
|
| 20 |
+
category_mapping={'0': 'Boat'},
|
| 21 |
+
image_size=640)
|
|
|
|
|
|
|
| 22 |
|
| 23 |
res = get_sliced_prediction(im, model, slice_width=320,
|
| 24 |
slice_height=320, overlap_height_ratio=0.2,
|
| 25 |
overlap_width_ratio=0.2, verbose=0)
|
| 26 |
img = PIL.Image.open(im)
|
| 27 |
+
img = PIL.ImageEnhance.Brightness(img)
|
| 28 |
+
img = img.enhance(2.0)
|
| 29 |
+
visual_result = visualize_object_predictions(image=np.array(img), color=(100, 193, 203),
|
| 30 |
object_prediction_list=res.object_prediction_list,
|
| 31 |
+
text_size=0.4, hide_labels=True, hide_conf=True,
|
| 32 |
rect_th=1)
|
| 33 |
+
fig = px.imshow(visual_result['image'], width=900, height=900)
|
| 34 |
fig.update_layout(showlegend=False, hovermode=False)
|
| 35 |
fig.update_xaxes(visible=False)
|
| 36 |
fig.update_yaxes(visible=False)
|
|
|
|
| 38 |
|
| 39 |
inputs = [
|
| 40 |
gr.Image(type='filepath', label='Input'),
|
| 41 |
+
gr.components.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label='Confidence Threshold'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
]
|
| 43 |
|
| 44 |
outputs = [
|
|
|
|
| 48 |
example_images = [[f'examples/{f}'] for f in os.listdir('examples')]
|
| 49 |
|
| 50 |
|
|
|
|
| 51 |
gr.Interface(
|
| 52 |
fn=inference,
|
| 53 |
inputs=inputs,
|
|
|
|
| 57 |
cache_examples=False,
|
| 58 |
examples_per_page=10,
|
| 59 |
title='Marine vessel detection from Sentinel 2 images',
|
| 60 |
+
description="""Model detects potential marine vessels from Sentinel 2 imagery.
|
| 61 |
+
Each example image covers 7.68x7.68 km (768x768 pixels). The result image has its brightness increased,
|
| 62 |
+
but the predictions are made based on Sentinel-2 L1C-TCI data.
|
| 63 |
As we don't clean the prediction with stationary targets that look like vessels in this resolution,
|
| 64 |
+
there will most likely be false positives from lighthouses, above-water rocks and on land."""
|
| 65 |
+
).launch(share=True, server_name='0.0.0.0')
|
|
|