1 / app.py
mayf's picture
Update app.py
c4ae250 verified
raw
history blame
3.62 kB
import streamlit as st
from PIL import Image
from io import BytesIO
from huggingface_hub import InferenceApi
from gtts import gTTS
import tempfile
st.set_page_config(page_title="Magic Story Generator", layout="centered")
st.title("📖✨ Turn Images into Children's Stories")
# —––––––– Clients (cached) —–––––––
@st.cache_resource
def load_clients():
hf_token = st.secrets["HF_TOKEN"]
return (
InferenceApi("Salesforce/blip-image-captioning-base", token=hf_token),
InferenceApi("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", token=hf_token)
)
caption_client, story_client = load_clients()
def generate_caption(img):
"""
Runs the BLIP caption model on a PIL.Image and returns the generated text.
"""
img_bytes = BytesIO()
img.save(img_bytes, format="JPEG")
try:
result = caption_client(data=img_bytes.getvalue())
if isinstance(result, list) and result:
return result[0].get("generated_text", "").strip()
return ""
except Exception as e:
st.error(f"Caption generation error: {e}")
return ""
def process_image(uploaded_file):
try:
img = Image.open(uploaded_file).convert("RGB")
if max(img.size) > 2048:
img.thumbnail((2048, 2048))
return img
except Exception as e:
st.error(f"Image processing error: {e}")
st.stop()
uploaded = st.file_uploader("Upload an image:", type=["jpg", "png", "jpeg"])
if uploaded:
img = process_image(uploaded)
st.image(img, use_container_width=True)
with st.spinner("Generating caption..."):
caption = generate_caption(img)
if not caption:
st.error("😢 Couldn't understand this image. Try another one!")
st.stop()
st.success(f"**Caption:** {caption}")
# Story Generation Prompt
story_prompt = (
f"Image description: {caption}\n\n"
"Write a 50-100 word children's story that:\n"
"1. Features the main subject as a friendly character\n"
"2. Includes a simple adventure or discovery\n"
"3. Ends with a happy or funny conclusion\n"
"4. Uses simple language for ages 3-8\n\n"
"Story:\n"
)
# Generate Story
with st.spinner("📝 Writing magical story..."):
try:
story_response = story_client(
story_prompt,
max_new_tokens=200,
temperature=0.8,
top_p=0.95,
repetition_penalty=1.15,
do_sample=True,
no_repeat_ngram_size=2
)
# Process response
full_text = story_response[0]['generated_text']
story = full_text.split("Story:")[-1].strip()
# Ensure clean ending
if "." in story:
story = story.rsplit(".", 1)[0] + "."
except Exception as e:
st.error(f"🚨 Story magic failed: {str(e)}")
st.stop()
# Display Story
st.subheader("📚 Your Magical Story")
st.write(story)
# Audio Conversion
with st.spinner("🔊 Adding story voice..."):
try:
tts = gTTS(text=story, lang="en", slow=False)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
st.audio(fp.name, format="audio/mp3")
except Exception as e:
st.warning("⚠️ Couldn't make audio version: " + str(e))
st.markdown("---\n*Made with ❤️ by your friendly story wizard*")