|
|
|
|
|
import streamlit as st |
|
from PIL import Image |
|
from transformers import pipeline |
|
import pyttsx3 |
|
import tempfile |
|
|
|
|
|
st.set_page_config(page_title="Storyteller for Kids", layout="centered") |
|
st.title("🖼️ ➡️ 📖 Interactive Storyteller") |
|
|
|
|
|
@st.cache_resource |
|
def load_pipelines(): |
|
|
|
captioner = pipeline( |
|
"image-to-text", |
|
model="Salesforce/blip-image-captioning-base", |
|
device=0 |
|
) |
|
|
|
storyteller = pipeline( |
|
"text-generation", |
|
model="EleutherAI/gpt-neo-125M", |
|
device=0 |
|
) |
|
|
|
|
|
dummy = Image.new("RGB", (384, 384), color=(128, 128, 128)) |
|
captioner(dummy) |
|
storyteller("Hello", max_new_tokens=1) |
|
|
|
return captioner, storyteller |
|
|
|
|
|
@st.cache_resource |
|
def init_tts_engine(): |
|
engine = pyttsx3.init() |
|
engine.setProperty("rate", 150) |
|
return engine |
|
|
|
captioner, storyteller = load_pipelines() |
|
tts_engine = init_tts_engine() |
|
|
|
|
|
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"]) |
|
if uploaded: |
|
|
|
image = Image.open(uploaded).convert("RGB") |
|
image = image.resize((384, 384), Image.LANCZOS) |
|
st.image(image, caption="Your image", use_container_width=True) |
|
|
|
|
|
with st.spinner("🔍 Generating caption..."): |
|
cap = captioner(image)[0]["generated_text"].strip() |
|
st.markdown(f"**Caption:** {cap}") |
|
|
|
|
|
prompt = ( |
|
f"Tell an 80–100 word fun story for 3–10 year-olds based on:\n\n“{cap}”\n\nStory:" |
|
) |
|
with st.spinner("✍️ Generating story..."): |
|
out = storyteller( |
|
prompt, |
|
max_new_tokens=120, |
|
do_sample=False |
|
) |
|
story = out[0]["generated_text"].strip() |
|
st.markdown("**Story:**") |
|
st.write(story) |
|
|
|
|
|
with st.spinner("🔊 Converting to speech..."): |
|
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) |
|
tts_engine.save_to_file(story, tmp.name) |
|
tts_engine.runAndWait() |
|
st.audio(tmp.name) |
|
|