Spaces:
Running
Running
import os | |
import numpy as np | |
import random | |
import torch | |
import torch.utils.data | |
from vits.utils import load_wav_to_torch | |
def load_filepaths(filename, split="|"): | |
with open(filename, encoding='utf-8') as f: | |
filepaths = [line.strip().split(split) for line in f] | |
return filepaths | |
class TextAudioSpeakerSet(torch.utils.data.Dataset): | |
def __init__(self, filename, hparams): | |
self.items = load_filepaths(filename) | |
self.max_wav_value = hparams.max_wav_value | |
self.sampling_rate = hparams.sampling_rate | |
self.segment_size = hparams.segment_size | |
self.hop_length = hparams.hop_length | |
self._filter() | |
print(f'----------{len(self.items)}----------') | |
def _filter(self): | |
lengths = [] | |
items_new = [] | |
items_min = int(self.segment_size / self.hop_length * 4) # 1 S | |
items_max = int(self.segment_size / self.hop_length * 16) # 4 S | |
for wavpath, spec, pitch, vec, ppg, spk in self.items: | |
if not os.path.isfile(wavpath): | |
continue | |
if not os.path.isfile(spec): | |
continue | |
if not os.path.isfile(pitch): | |
continue | |
if not os.path.isfile(vec): | |
continue | |
if not os.path.isfile(ppg): | |
continue | |
if not os.path.isfile(spk): | |
continue | |
temp = np.load(pitch) | |
usel = int(temp.shape[0] - 1) # useful length | |
if (usel < items_min): | |
continue | |
if (usel >= items_max): | |
usel = items_max | |
items_new.append([wavpath, spec, pitch, vec, ppg, spk, usel]) | |
lengths.append(usel) | |
self.items = items_new | |
self.lengths = lengths | |
def read_wav(self, filename): | |
audio, sampling_rate = load_wav_to_torch(filename) | |
assert sampling_rate == self.sampling_rate, f"error: this sample rate of {filename} is {sampling_rate}" | |
audio_norm = audio / self.max_wav_value | |
audio_norm = audio_norm.unsqueeze(0) | |
return audio_norm | |
def __getitem__(self, index): | |
return self.my_getitem(index) | |
def __len__(self): | |
return len(self.items) | |
def my_getitem(self, idx): | |
item = self.items[idx] | |
# print(item) | |
wav = item[0] | |
spe = item[1] | |
pit = item[2] | |
vec = item[3] | |
ppg = item[4] | |
spk = item[5] | |
use = item[6] | |
wav = self.read_wav(wav) | |
spe = torch.load(spe) | |
pit = np.load(pit) | |
vec = np.load(vec) | |
vec = np.repeat(vec, 2, 0) # 320 PPG -> 160 * 2 | |
ppg = np.load(ppg) | |
ppg = np.repeat(ppg, 2, 0) # 320 PPG -> 160 * 2 | |
spk = np.load(spk) | |
pit = torch.FloatTensor(pit) | |
vec = torch.FloatTensor(vec) | |
ppg = torch.FloatTensor(ppg) | |
spk = torch.FloatTensor(spk) | |
len_pit = pit.size()[0] | |
len_vec = vec.size()[0] - 2 # for safe | |
len_ppg = ppg.size()[0] - 2 # for safe | |
len_min = min(len_pit, len_vec) | |
len_min = min(len_min, len_ppg) | |
len_wav = len_min * self.hop_length | |
pit = pit[:len_min] | |
vec = vec[:len_min, :] | |
ppg = ppg[:len_min, :] | |
spe = spe[:, :len_min] | |
wav = wav[:, :len_wav] | |
if len_min > use: | |
max_frame_start = ppg.size(0) - use - 1 | |
frame_start = random.randint(0, max_frame_start) | |
frame_end = frame_start + use | |
pit = pit[frame_start:frame_end] | |
vec = vec[frame_start:frame_end, :] | |
ppg = ppg[frame_start:frame_end, :] | |
spe = spe[:, frame_start:frame_end] | |
wav_start = frame_start * self.hop_length | |
wav_end = frame_end * self.hop_length | |
wav = wav[:, wav_start:wav_end] | |
# print(spe.shape) | |
# print(wav.shape) | |
# print(ppg.shape) | |
# print(pit.shape) | |
# print(spk.shape) | |
return spe, wav, ppg, vec, pit, spk | |
class TextAudioSpeakerCollate: | |
"""Zero-pads model inputs and targets""" | |
def __call__(self, batch): | |
# Right zero-pad all one-hot text sequences to max input length | |
# mel: [freq, length] | |
# wav: [1, length] | |
# ppg: [len, 1024] | |
# pit: [len] | |
# spk: [256] | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_spe_len = max([x[0].size(1) for x in batch]) | |
max_wav_len = max([x[1].size(1) for x in batch]) | |
spe_lengths = torch.LongTensor(len(batch)) | |
wav_lengths = torch.LongTensor(len(batch)) | |
spe_padded = torch.FloatTensor( | |
len(batch), batch[0][0].size(0), max_spe_len) | |
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) | |
spe_padded.zero_() | |
wav_padded.zero_() | |
max_ppg_len = max([x[2].size(0) for x in batch]) | |
ppg_lengths = torch.FloatTensor(len(batch)) | |
ppg_padded = torch.FloatTensor( | |
len(batch), max_ppg_len, batch[0][2].size(1)) | |
vec_padded = torch.FloatTensor( | |
len(batch), max_ppg_len, batch[0][3].size(1)) | |
pit_padded = torch.FloatTensor(len(batch), max_ppg_len) | |
ppg_padded.zero_() | |
vec_padded.zero_() | |
pit_padded.zero_() | |
spk = torch.FloatTensor(len(batch), batch[0][5].size(0)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spe = row[0] | |
spe_padded[i, :, : spe.size(1)] = spe | |
spe_lengths[i] = spe.size(1) | |
wav = row[1] | |
wav_padded[i, :, : wav.size(1)] = wav | |
wav_lengths[i] = wav.size(1) | |
ppg = row[2] | |
ppg_padded[i, : ppg.size(0), :] = ppg | |
ppg_lengths[i] = ppg.size(0) | |
vec = row[3] | |
vec_padded[i, : vec.size(0), :] = vec | |
pit = row[4] | |
pit_padded[i, : pit.size(0)] = pit | |
spk[i] = row[5] | |
# print(ppg_padded.shape) | |
# print(ppg_lengths.shape) | |
# print(pit_padded.shape) | |
# print(spk.shape) | |
# print(spe_padded.shape) | |
# print(spe_lengths.shape) | |
# print(wav_padded.shape) | |
# print(wav_lengths.shape) | |
return ( | |
ppg_padded, | |
ppg_lengths, | |
vec_padded, | |
pit_padded, | |
spk, | |
spe_padded, | |
spe_lengths, | |
wav_padded, | |
wav_lengths, | |
) | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
""" | |
Maintain similar input lengths in a batch. | |
Length groups are specified by boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. | |
It removes samples which are not included in the boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. | |
""" | |
def __init__( | |
self, | |
dataset, | |
batch_size, | |
boundaries, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: | |
buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, 0, -1): | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = ( | |
total_batch_size - (len_bucket % total_batch_size) | |
) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm( | |
len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
if (len_bucket == 0): | |
continue | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
# add extra samples to make it evenly divisible | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = ( | |
ids_bucket | |
+ ids_bucket * (rem // len_bucket) | |
+ ids_bucket[: (rem % len_bucket)] | |
) | |
# subsample | |
ids_bucket = ids_bucket[self.rank:: self.num_replicas] | |
# batching | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [ | |
bucket[idx] | |
for idx in ids_bucket[ | |
j * self.batch_size: (j + 1) * self.batch_size | |
] | |
] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: | |
hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: | |
return mid | |
elif x <= self.boundaries[mid]: | |
return self._bisect(x, lo, mid) | |
else: | |
return self._bisect(x, mid + 1, hi) | |
else: | |
return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |