Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from grad.base import BaseModule | |
from grad.reversal import SpeakerClassifier | |
from grad.utils import sequence_mask, convert_pad_shape | |
class LayerNorm(BaseModule): | |
def __init__(self, channels, eps=1e-4): | |
super(LayerNorm, self).__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = torch.nn.Parameter(torch.ones(channels)) | |
self.beta = torch.nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
n_dims = len(x.shape) | |
mean = torch.mean(x, 1, keepdim=True) | |
variance = torch.mean((x - mean)**2, 1, keepdim=True) | |
x = (x - mean) * torch.rsqrt(variance + self.eps) | |
shape = [1, -1] + [1] * (n_dims - 2) | |
x = x * self.gamma.view(*shape) + self.beta.view(*shape) | |
return x | |
class ConvReluNorm(BaseModule): | |
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, | |
n_layers, p_dropout, eps=1e-5): | |
super(ConvReluNorm, self).__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.p_dropout = p_dropout | |
self.eps = eps | |
self.conv_layers = torch.nn.ModuleList() | |
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, | |
kernel_size, padding=kernel_size//2)) | |
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout)) | |
for _ in range(n_layers - 1): | |
self.conv_layers.append(torch.nn.Conv1d(hidden_channels, hidden_channels, | |
kernel_size, padding=kernel_size//2)) | |
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask): | |
for i in range(self.n_layers): | |
x = self.conv_layers[i](x * x_mask) | |
x = self.instance_norm(x, x_mask) | |
x = self.relu_drop(x) | |
x = self.proj(x) | |
return x * x_mask | |
def instance_norm(self, x, mask, return_mean_std=False): | |
mean, std = self.calc_mean_std(x, mask) | |
x = (x - mean) / std | |
if return_mean_std: | |
return x, mean, std | |
else: | |
return x | |
def calc_mean_std(self, x, mask=None): | |
x = x * mask | |
B, C = x.shape[:2] | |
mn = x.view(B, C, -1).mean(-1) | |
sd = (x.view(B, C, -1).var(-1) + self.eps).sqrt() | |
mn = mn.view(B, C, *((len(x.shape) - 2) * [1])) | |
sd = sd.view(B, C, *((len(x.shape) - 2) * [1])) | |
return mn, sd | |
class MultiHeadAttention(BaseModule): | |
def __init__(self, channels, out_channels, n_heads, window_size=None, | |
heads_share=True, p_dropout=0.0, proximal_bias=False, | |
proximal_init=False): | |
super(MultiHeadAttention, self).__init__() | |
assert channels % n_heads == 0 | |
self.channels = channels | |
self.out_channels = out_channels | |
self.n_heads = n_heads | |
self.window_size = window_size | |
self.heads_share = heads_share | |
self.proximal_bias = proximal_bias | |
self.p_dropout = p_dropout | |
self.attn = None | |
self.k_channels = channels // n_heads | |
self.conv_q = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_k = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_v = torch.nn.Conv1d(channels, channels, 1) | |
if window_size is not None: | |
n_heads_rel = 1 if heads_share else n_heads | |
rel_stddev = self.k_channels**-0.5 | |
self.emb_rel_k = torch.nn.Parameter(torch.randn(n_heads_rel, | |
window_size * 2 + 1, self.k_channels) * rel_stddev) | |
self.emb_rel_v = torch.nn.Parameter(torch.randn(n_heads_rel, | |
window_size * 2 + 1, self.k_channels) * rel_stddev) | |
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) | |
self.drop = torch.nn.Dropout(p_dropout) | |
torch.nn.init.xavier_uniform_(self.conv_q.weight) | |
torch.nn.init.xavier_uniform_(self.conv_k.weight) | |
if proximal_init: | |
self.conv_k.weight.data.copy_(self.conv_q.weight.data) | |
self.conv_k.bias.data.copy_(self.conv_q.bias.data) | |
torch.nn.init.xavier_uniform_(self.conv_v.weight) | |
def forward(self, x, c, attn_mask=None): | |
q = self.conv_q(x) | |
k = self.conv_k(c) | |
v = self.conv_v(c) | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
x = self.conv_o(x) | |
return x | |
def attention(self, query, key, value, mask=None): | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | |
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) | |
if self.window_size is not None: | |
assert t_s == t_t, "Relative attention is only available for self-attention." | |
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | |
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) | |
rel_logits = self._relative_position_to_absolute_position(rel_logits) | |
scores_local = rel_logits / math.sqrt(self.k_channels) | |
scores = scores + scores_local | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias is only available for self-attention." | |
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, | |
dtype=scores.dtype) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e4) | |
p_attn = torch.nn.functional.softmax(scores, dim=-1) | |
p_attn = self.drop(p_attn) | |
output = torch.matmul(p_attn, value) | |
if self.window_size is not None: | |
relative_weights = self._absolute_position_to_relative_position(p_attn) | |
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) | |
output = output + self._matmul_with_relative_values(relative_weights, | |
value_relative_embeddings) | |
output = output.transpose(2, 3).contiguous().view(b, d, t_t) | |
return output, p_attn | |
def _matmul_with_relative_values(self, x, y): | |
ret = torch.matmul(x, y.unsqueeze(0)) | |
return ret | |
def _matmul_with_relative_keys(self, x, y): | |
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | |
return ret | |
def _get_relative_embeddings(self, relative_embeddings, length): | |
pad_length = max(length - (self.window_size + 1), 0) | |
slice_start_position = max((self.window_size + 1) - length, 0) | |
slice_end_position = slice_start_position + 2 * length - 1 | |
if pad_length > 0: | |
padded_relative_embeddings = torch.nn.functional.pad( | |
relative_embeddings, convert_pad_shape([[0, 0], | |
[pad_length, pad_length], [0, 0]])) | |
else: | |
padded_relative_embeddings = relative_embeddings | |
used_relative_embeddings = padded_relative_embeddings[:, | |
slice_start_position:slice_end_position] | |
return used_relative_embeddings | |
def _relative_position_to_absolute_position(self, x): | |
batch, heads, length, _ = x.size() | |
x = torch.nn.functional.pad(x, convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) | |
x_flat = x.view([batch, heads, length * 2 * length]) | |
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0,0],[0,0],[0,length-1]])) | |
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] | |
return x_final | |
def _absolute_position_to_relative_position(self, x): | |
batch, heads, length, _ = x.size() | |
x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) | |
x_flat = x.view([batch, heads, length**2 + length*(length - 1)]) | |
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])) | |
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] | |
return x_final | |
def _attention_bias_proximal(self, length): | |
r = torch.arange(length, dtype=torch.float32) | |
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | |
class FFN(BaseModule): | |
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, | |
p_dropout=0.0): | |
super(FFN, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, | |
padding=kernel_size//2) | |
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, | |
padding=kernel_size//2) | |
self.drop = torch.nn.Dropout(p_dropout) | |
def forward(self, x, x_mask): | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
return x * x_mask | |
class Encoder(BaseModule): | |
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, | |
kernel_size=1, p_dropout=0.0, window_size=None, **kwargs): | |
super(Encoder, self).__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.drop = torch.nn.Dropout(p_dropout) | |
self.attn_layers = torch.nn.ModuleList() | |
self.norm_layers_1 = torch.nn.ModuleList() | |
self.ffn_layers = torch.nn.ModuleList() | |
self.norm_layers_2 = torch.nn.ModuleList() | |
for _ in range(self.n_layers): | |
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, | |
n_heads, window_size=window_size, p_dropout=p_dropout)) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, | |
filter_channels, kernel_size, p_dropout=p_dropout)) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask): | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
for i in range(self.n_layers): | |
x = x * x_mask | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class TextEncoder(BaseModule): | |
def __init__(self, n_vecs, n_mels, n_embs, | |
n_channels, | |
filter_channels, | |
n_heads=2, | |
n_layers=6, | |
kernel_size=3, | |
p_dropout=0.1, | |
window_size=4): | |
super(TextEncoder, self).__init__() | |
self.n_vecs = n_vecs | |
self.n_mels = n_mels | |
self.n_embs = n_embs | |
self.n_channels = n_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.prenet = ConvReluNorm(n_vecs, | |
n_channels, | |
n_channels, | |
kernel_size=5, | |
n_layers=5, | |
p_dropout=0.5) | |
self.speaker = SpeakerClassifier( | |
n_channels, | |
256, # n_spks: 256 | |
) | |
self.encoder = Encoder(n_channels + n_embs + n_embs, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
window_size=window_size) | |
self.proj_m = torch.nn.Conv1d(n_channels + n_embs + n_embs, n_mels, 1) | |
def forward(self, x_lengths, x, pit, spk, training=False): | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
# IN | |
x = self.prenet(x, x_mask) | |
if training: | |
r = self.speaker(x) | |
else: | |
r = None | |
# pitch + speaker | |
spk = spk.unsqueeze(-1).repeat(1, 1, x.shape[-1]) | |
x = torch.cat([x, pit], dim=1) | |
x = torch.cat([x, spk], dim=1) | |
x = self.encoder(x, x_mask) | |
mu = self.proj_m(x) * x_mask | |
return mu, x_mask, r | |
def fine_tune(self): | |
for p in self.prenet.parameters(): | |
p.requires_grad = False | |
for p in self.speaker.parameters(): | |
p.requires_grad = False | |