Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import math | |
import torch | |
import logging | |
import random | |
import subprocess | |
import numpy as np | |
import torch.distributed as dist | |
from torch import inf | |
from PIL import Image | |
from typing import Union, Iterable | |
from collections import OrderedDict | |
from torch.utils.tensorboard import SummaryWriter | |
from diffusers.utils import is_bs4_available, is_ftfy_available | |
import html | |
import re | |
import urllib.parse as ul | |
if is_bs4_available(): | |
from bs4 import BeautifulSoup | |
if is_ftfy_available(): | |
import ftfy | |
_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] | |
################################################################################# | |
# Training Clip Gradients # | |
################################################################################# | |
def get_grad_norm( | |
parameters: _tensor_or_tensors, norm_type: float = 2.0) -> torch.Tensor: | |
r""" | |
Copy from torch.nn.utils.clip_grad_norm_ | |
Clips gradient norm of an iterable of parameters. | |
The norm is computed over all gradients together, as if they were | |
concatenated into a single vector. Gradients are modified in-place. | |
Args: | |
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a | |
single Tensor that will have gradients normalized | |
max_norm (float or int): max norm of the gradients | |
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for | |
infinity norm. | |
error_if_nonfinite (bool): if True, an error is thrown if the total | |
norm of the gradients from :attr:`parameters` is ``nan``, | |
``inf``, or ``-inf``. Default: False (will switch to True in the future) | |
Returns: | |
Total norm of the parameter gradients (viewed as a single vector). | |
""" | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
grads = [p.grad for p in parameters if p.grad is not None] | |
norm_type = float(norm_type) | |
if len(grads) == 0: | |
return torch.tensor(0.) | |
device = grads[0].device | |
if norm_type == inf: | |
norms = [g.detach().abs().max().to(device) for g in grads] | |
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms)) | |
else: | |
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type) | |
return total_norm | |
def clip_grad_norm_( | |
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0, | |
error_if_nonfinite: bool = False, clip_grad = True) -> torch.Tensor: | |
r""" | |
Copy from torch.nn.utils.clip_grad_norm_ | |
Clips gradient norm of an iterable of parameters. | |
The norm is computed over all gradients together, as if they were | |
concatenated into a single vector. Gradients are modified in-place. | |
Args: | |
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a | |
single Tensor that will have gradients normalized | |
max_norm (float or int): max norm of the gradients | |
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for | |
infinity norm. | |
error_if_nonfinite (bool): if True, an error is thrown if the total | |
norm of the gradients from :attr:`parameters` is ``nan``, | |
``inf``, or ``-inf``. Default: False (will switch to True in the future) | |
Returns: | |
Total norm of the parameter gradients (viewed as a single vector). | |
""" | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
grads = [p.grad for p in parameters if p.grad is not None] | |
max_norm = float(max_norm) | |
norm_type = float(norm_type) | |
if len(grads) == 0: | |
return torch.tensor(0.) | |
device = grads[0].device | |
if norm_type == inf: | |
norms = [g.detach().abs().max().to(device) for g in grads] | |
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms)) | |
else: | |
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type) | |
if clip_grad: | |
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()): | |
raise RuntimeError( | |
f'The total norm of order {norm_type} for gradients from ' | |
'`parameters` is non-finite, so it cannot be clipped. To disable ' | |
'this error and scale the gradients by the non-finite norm anyway, ' | |
'set `error_if_nonfinite=False`') | |
clip_coef = max_norm / (total_norm + 1e-6) | |
# Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so | |
# avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization | |
# when the gradients do not reside in CPU memory. | |
clip_coef_clamped = torch.clamp(clip_coef, max=1.0) | |
for g in grads: | |
g.detach().mul_(clip_coef_clamped.to(g.device)) | |
# gradient_cliped = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type) | |
return total_norm | |
def get_experiment_dir(root_dir, args): | |
# if args.pretrained is not None and 'Latte-XL-2-256x256.pt' not in args.pretrained: | |
# root_dir += '-WOPRE' | |
if args.use_compile: | |
root_dir += '-Compile' # speedup by torch compile | |
if args.fixed_spatial: | |
root_dir += '-FixedSpa' | |
if args.enable_xformers_memory_efficient_attention: | |
root_dir += '-Xfor' | |
if args.gradient_checkpointing: | |
root_dir += '-Gc' | |
if args.mixed_precision: | |
root_dir += '-Amp' | |
if args.image_size == 512: | |
root_dir += '-512' | |
return root_dir | |
################################################################################# | |
# Training Logger # | |
################################################################################# | |
def create_logger(logging_dir): | |
""" | |
Create a logger that writes to a log file and stdout. | |
""" | |
if dist.get_rank() == 0: # real logger | |
logging.basicConfig( | |
level=logging.INFO, | |
# format='[\033[34m%(asctime)s\033[0m] %(message)s', | |
format='[%(asctime)s] %(message)s', | |
datefmt='%Y-%m-%d %H:%M:%S', | |
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")] | |
) | |
logger = logging.getLogger(__name__) | |
else: # dummy logger (does nothing) | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
return logger | |
def create_tensorboard(tensorboard_dir): | |
""" | |
Create a tensorboard that saves losses. | |
""" | |
if dist.get_rank() == 0: # real tensorboard | |
# tensorboard | |
writer = SummaryWriter(tensorboard_dir) | |
return writer | |
def write_tensorboard(writer, *args): | |
''' | |
write the loss information to a tensorboard file. | |
Only for pytorch DDP mode. | |
''' | |
if dist.get_rank() == 0: # real tensorboard | |
writer.add_scalar(args[0], args[1], args[2]) | |
################################################################################# | |
# EMA Update/ DDP Training Utils # | |
################################################################################# | |
def update_ema(ema_model, model, decay=0.9999): | |
""" | |
Step the EMA model towards the current model. | |
""" | |
ema_params = OrderedDict(ema_model.named_parameters()) | |
model_params = OrderedDict(model.named_parameters()) | |
for name, param in model_params.items(): | |
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed | |
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay) | |
def requires_grad(model, flag=True): | |
""" | |
Set requires_grad flag for all parameters in a model. | |
""" | |
for p in model.parameters(): | |
p.requires_grad = flag | |
def cleanup(): | |
""" | |
End DDP training. | |
""" | |
dist.destroy_process_group() | |
def setup_distributed(backend="nccl", port=None): | |
"""Initialize distributed training environment. | |
support both slurm and torch.distributed.launch | |
see torch.distributed.init_process_group() for more details | |
""" | |
num_gpus = torch.cuda.device_count() | |
if "SLURM_JOB_ID" in os.environ: | |
rank = int(os.environ["SLURM_PROCID"]) | |
world_size = int(os.environ["SLURM_NTASKS"]) | |
node_list = os.environ["SLURM_NODELIST"] | |
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1") | |
# specify master port | |
if port is not None: | |
os.environ["MASTER_PORT"] = str(port) | |
elif "MASTER_PORT" not in os.environ: | |
# os.environ["MASTER_PORT"] = "29566" | |
os.environ["MASTER_PORT"] = str(29567 + num_gpus) | |
if "MASTER_ADDR" not in os.environ: | |
os.environ["MASTER_ADDR"] = addr | |
os.environ["WORLD_SIZE"] = str(world_size) | |
os.environ["LOCAL_RANK"] = str(rank % num_gpus) | |
os.environ["RANK"] = str(rank) | |
else: | |
rank = int(os.environ["RANK"]) | |
world_size = int(os.environ["WORLD_SIZE"]) | |
# torch.cuda.set_device(rank % num_gpus) | |
dist.init_process_group( | |
backend=backend, | |
world_size=world_size, | |
rank=rank, | |
) | |
################################################################################# | |
# Testing Utils # | |
################################################################################# | |
def save_video_grid(video, nrow=None): | |
b, t, h, w, c = video.shape | |
if nrow is None: | |
nrow = math.ceil(math.sqrt(b)) | |
ncol = math.ceil(b / nrow) | |
padding = 1 | |
video_grid = torch.zeros((t, (padding + h) * nrow + padding, | |
(padding + w) * ncol + padding, c), dtype=torch.uint8) | |
for i in range(b): | |
r = i // ncol | |
c = i % ncol | |
start_r = (padding + h) * r | |
start_c = (padding + w) * c | |
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i] | |
return video_grid | |
def find_model(model_name): | |
""" | |
Finds a pre-trained Latte model, downloading it if necessary. Alternatively, loads a model from a local path. | |
""" | |
assert os.path.isfile(model_name), f'Could not find Latte checkpoint at {model_name}' | |
checkpoint = torch.load(model_name, map_location=lambda storage, loc: storage) | |
if "ema" in checkpoint: # supports checkpoints from train.py | |
print('Using Ema!') | |
checkpoint = checkpoint["ema"] | |
else: | |
print('Using model!') | |
checkpoint = checkpoint['model'] | |
return checkpoint | |
################################################################################# | |
# MMCV Utils # | |
################################################################################# | |
def collect_env(): | |
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmcv.utils import collect_env as collect_base_env | |
from mmcv.utils import get_git_hash | |
"""Collect the information of the running environments.""" | |
env_info = collect_base_env() | |
env_info['MMClassification'] = get_git_hash()[:7] | |
for name, val in env_info.items(): | |
print(f'{name}: {val}') | |
print(torch.cuda.get_arch_list()) | |
print(torch.version.cuda) | |
################################################################################# | |
# Pixart-alpha Utils # | |
################################################################################# | |
bad_punct_regex = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) | |
def text_preprocessing(text, clean_caption=False): | |
if clean_caption and not is_bs4_available(): | |
clean_caption = False | |
if clean_caption and not is_ftfy_available(): | |
clean_caption = False | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
if clean_caption: | |
text = clean_caption(text) | |
text = clean_caption(text) | |
else: | |
text = text.lower().strip() | |
return text | |
return [process(t) for t in text] | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
def clean_caption(caption): | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub(bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = ftfy.fix_text(caption) | |
caption = html.unescape(html.unescape(caption)) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |