Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
import os | |
import copy | |
from typing import List, Dict | |
import zipfile | |
import json | |
import random | |
from typing import Tuple | |
import numpy as np | |
import PIL.Image | |
import torch | |
from tools import dnnlib | |
from omegaconf import DictConfig, OmegaConf | |
from tools.utils.layers import sample_frames | |
try: | |
import pyspng | |
except ImportError: | |
pyspng = None | |
#---------------------------------------------------------------------------- | |
NUMPY_INTEGER_TYPES = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64] | |
NUMPY_FLOAT_TYPES = [np.float16, np.float32, np.float64, np.single, np.double] | |
#---------------------------------------------------------------------------- | |
class Dataset(torch.utils.data.Dataset): | |
def __init__(self, | |
name, # Name of the dataset. | |
raw_shape, # Shape of the raw image data (NCHW). | |
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip. | |
use_labels = False, # Enable conditioning labels? False = label dimension is zero. | |
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size. | |
random_seed = 0, # Random seed to use when applying max_size. | |
): | |
self._name = name | |
self._raw_shape = list(raw_shape) | |
self._use_labels = use_labels | |
self._raw_labels = None | |
self._label_shape = None | |
# Apply max_size. | |
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64) | |
if (max_size is not None) and (self._raw_idx.size > max_size): | |
np.random.RandomState(random_seed).shuffle(self._raw_idx) | |
self._raw_idx = np.sort(self._raw_idx[:max_size]) | |
# Apply xflip. | |
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8) | |
if xflip: | |
self._raw_idx = np.tile(self._raw_idx, 2) | |
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)]) | |
def _file_ext(fname): | |
return os.path.splitext(fname)[1].lower() | |
def _get_raw_labels(self): | |
if self._raw_labels is None: | |
self._raw_labels = self._load_raw_labels() if self._use_labels else None | |
if self._raw_labels is None: | |
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32) | |
assert isinstance(self._raw_labels, np.ndarray) | |
assert self._raw_labels.shape[0] == self._raw_shape[0] | |
assert self._raw_labels.dtype in [np.float32, np.int64] | |
if self._raw_labels.dtype == np.int64: | |
assert np.all(self._raw_labels >= 0) | |
return self._raw_labels | |
def close(self): # to be overridden by subclass | |
pass | |
def _load_raw_image(self, raw_idx): # to be overridden by subclass | |
raise NotImplementedError | |
def _load_raw_labels(self): # to be overridden by subclass | |
raise NotImplementedError | |
def __getstate__(self): | |
return dict(self.__dict__, _raw_labels=None) | |
def __del__(self): | |
try: | |
self.close() | |
except: | |
pass | |
def __len__(self): | |
return self._raw_idx.size | |
def __getitem__(self, idx): | |
image = self._load_raw_image(self._raw_idx[idx]) | |
assert isinstance(image, np.ndarray) | |
assert list(image.shape) == self.image_shape | |
assert image.dtype == np.uint8 | |
if self._xflip[idx]: | |
assert image.ndim == 3 # CHW | |
image = image[:, :, ::-1] | |
return { | |
'image': image.copy(), | |
'label': self.get_label(idx), | |
} | |
def get_label(self, idx): | |
label = self._get_raw_labels()[self._raw_idx[idx]] | |
if label.dtype == np.int64: | |
onehot = np.zeros(self.label_shape, dtype=np.float32) | |
onehot[label] = 1 | |
label = onehot | |
return label.copy() | |
def get_details(self, idx): | |
d = dnnlib.EasyDict() | |
d.raw_idx = int(self._raw_idx[idx]) | |
d.xflip = (int(self._xflip[idx]) != 0) | |
d.raw_label = self._get_raw_labels()[d.raw_idx].copy() | |
return d | |
def name(self): | |
return self._name | |
def image_shape(self): | |
return list(self._raw_shape[1:]) | |
def num_channels(self): | |
assert len(self.image_shape) == 3 # CHW | |
return self.image_shape[0] | |
def resolution(self): | |
assert len(self.image_shape) == 3 # CHW | |
assert self.image_shape[1] == self.image_shape[2] | |
return self.image_shape[1] | |
def label_shape(self): | |
if self._label_shape is None: | |
raw_labels = self._get_raw_labels() | |
if raw_labels.dtype == np.int64: | |
self._label_shape = [int(np.max(raw_labels)) + 1] | |
else: | |
self._label_shape = raw_labels.shape[1:] | |
return list(self._label_shape) | |
def label_dim(self): | |
assert len(self.label_shape) == 1, f"Labels must be 1-dimensional: {self.label_shape} to use `.label_dim`" | |
return self.label_shape[0] | |
def has_labels(self): | |
return any(x != 0 for x in self.label_shape) | |
def has_onehot_labels(self): | |
return self._get_raw_labels().dtype == np.int64 | |
#---------------------------------------------------------------------------- | |
class ImageFolderDataset(Dataset): | |
def __init__(self, | |
path, # Path to directory or zip. | |
resolution = None, # Ensure specific resolution, None = highest available. | |
**super_kwargs, # Additional arguments for the Dataset base class. | |
): | |
self._path = path | |
self._zipfile = None | |
if os.path.isdir(self._path): | |
self._type = 'dir' | |
self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files} | |
elif self._file_ext(self._path) == '.zip': | |
self._type = 'zip' | |
self._all_fnames = set(self._get_zipfile().namelist()) | |
else: | |
raise IOError('Path must point to a directory or zip') | |
PIL.Image.init() | |
self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION) | |
if len(self._image_fnames) == 0: | |
raise IOError('No image files found in the specified path') | |
name = os.path.splitext(os.path.basename(self._path))[0] | |
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape) | |
if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution): | |
raise IOError(f'Image files do not match the specified resolution. Resolution is {resolution}, shape is {raw_shape}') | |
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs) | |
def _get_zipfile(self): | |
assert self._type == 'zip' | |
if self._zipfile is None: | |
self._zipfile = zipfile.ZipFile(self._path) | |
return self._zipfile | |
def _open_file(self, fname): | |
if self._type == 'dir': | |
return open(os.path.join(self._path, fname), 'rb') | |
if self._type == 'zip': | |
return self._get_zipfile().open(fname, 'r') | |
return None | |
def close(self): | |
try: | |
if self._zipfile is not None: | |
self._zipfile.close() | |
finally: | |
self._zipfile = None | |
def __getstate__(self): | |
return dict(super().__getstate__(), _zipfile=None) | |
def _load_raw_image(self, raw_idx): | |
fname = self._image_fnames[raw_idx] | |
with self._open_file(fname) as f: | |
use_pyspng = pyspng is not None and self._file_ext(fname) == '.png' | |
image = load_image_from_buffer(f, use_pyspng=use_pyspng) | |
return image | |
def _load_raw_labels(self): | |
fname = 'dataset.json' | |
labels_files = [f for f in self._all_fnames if f.endswith(fname)] | |
if len(labels_files) == 0: | |
return None | |
assert len(labels_files) == 1, f"There can be only a single {fname} file" | |
with self._open_file(labels_files[0]) as f: | |
labels = json.load(f)['labels'] | |
if labels is None: | |
return None | |
labels = dict(labels) | |
labels = [labels[remove_root(fname, self._name).replace('\\', '/')] for fname in self._image_fnames] | |
labels = np.array(labels) | |
if labels.dtype in NUMPY_INTEGER_TYPES: | |
labels = labels.astype(np.int64) | |
elif labels.dtype in NUMPY_FLOAT_TYPES: | |
labels = labels.astype(np.float32) | |
else: | |
raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}") | |
return labels | |
#---------------------------------------------------------------------------- | |
class VideoFramesFolderDataset(Dataset): | |
def __init__(self, | |
path, # Path to directory or zip. | |
cfg: DictConfig, # Config | |
resolution=None, # Unused arg for backward compatibility | |
load_n_consecutive: int=None, # Should we load first N frames for each video? | |
load_n_consecutive_random_offset: bool=True, # Should we use a random offset when loading consecutive frames? | |
subsample_factor: int=1, # Sampling factor, i.e. decreasing the temporal resolution | |
discard_short_videos: bool=False, # Should we discard videos that are shorter than `load_n_consecutive`? | |
**super_kwargs, # Additional arguments for the Dataset base class. | |
): | |
self.sampling_dict = OmegaConf.to_container(OmegaConf.create({**cfg.sampling})) if 'sampling' in cfg else None | |
self.max_num_frames = cfg.max_num_frames | |
self._path = path | |
self._zipfile = None | |
self.load_n_consecutive = load_n_consecutive | |
self.load_n_consecutive_random_offset = load_n_consecutive_random_offset | |
self.subsample_factor = subsample_factor | |
print(subsample_factor) | |
self.discard_short_videos = discard_short_videos | |
if self.subsample_factor > 1 and self.load_n_consecutive is None: | |
raise NotImplementedError("Can do subsampling only when loading consecutive frames.") | |
listdir_full_paths = lambda d: sorted([os.path.join(d, x) for x in os.listdir(d)]) | |
name = os.path.splitext(os.path.basename(self._path))[0] | |
if os.path.isdir(self._path): | |
self._type = 'dir' | |
# We assume that the depth is 2 | |
self._all_objects = {o for d in listdir_full_paths(self._path) for o in (([d] + listdir_full_paths(d)) if os.path.isdir(d) else [d])} | |
self._all_objects = {os.path.relpath(o, start=os.path.dirname(self._path)) for o in {self._path}.union(self._all_objects)} | |
elif self._file_ext(self._path) == '.zip': | |
self._type = 'zip' | |
self._all_objects = set(self._get_zipfile().namelist()) | |
else: | |
raise IOError('Path must be either a directory or point to a zip archive') | |
PIL.Image.init() | |
self._video_dir2frames = {} | |
objects = sorted([d for d in self._all_objects]) | |
root_path_depth = len(os.path.normpath(objects[0]).split(os.path.sep)) | |
curr_d = objects[1] # Root path is the first element | |
for o in objects[1:]: | |
curr_obj_depth = len(os.path.normpath(o).split(os.path.sep)) | |
if self._file_ext(o) in PIL.Image.EXTENSION: | |
assert o.startswith(curr_d), f"Object {o} is out of sync. It should lie inside {curr_d}" | |
assert curr_obj_depth == root_path_depth + 2, "Frame images should be inside directories" | |
if not curr_d in self._video_dir2frames: | |
self._video_dir2frames[curr_d] = [] | |
self._video_dir2frames[curr_d].append(o) | |
elif self._file_ext(o) == 'json': | |
assert curr_obj_depth == root_path_depth + 1, "Classes info file should be inside the root dir" | |
pass | |
else: | |
# We encountered a new directory | |
assert curr_obj_depth == root_path_depth + 1, f"Video directories should be inside the root dir. {o} is not." | |
if curr_d in self._video_dir2frames: | |
sorted_files = sorted(self._video_dir2frames[curr_d]) | |
self._video_dir2frames[curr_d] = sorted_files | |
curr_d = o | |
if self.discard_short_videos: | |
self._video_dir2frames = {d: fs for d, fs in self._video_dir2frames.items() if len(fs) >= self.load_n_consecutive * self.subsample_factor} | |
self._video_idx2frames = [frames for frames in self._video_dir2frames.values()] | |
if len(self._video_idx2frames) == 0: | |
raise IOError('No videos found in the specified archive') | |
raw_shape = [len(self._video_idx2frames)] + list(self._load_raw_frames(0, [0])[0][0].shape) | |
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs) | |
def _get_zipfile(self): | |
assert self._type == 'zip' | |
if self._zipfile is None: | |
self._zipfile = zipfile.ZipFile(self._path) | |
return self._zipfile | |
def _open_file(self, fname): | |
if self._type == 'dir': | |
return open(os.path.join(os.path.dirname(self._path), fname), 'rb') | |
if self._type == 'zip': | |
return self._get_zipfile().open(fname, 'r') | |
return None | |
def close(self): | |
try: | |
if self._zipfile is not None: | |
self._zipfile.close() | |
finally: | |
self._zipfile = None | |
def __getstate__(self): | |
return dict(super().__getstate__(), _zipfile=None) | |
def _load_raw_labels(self): | |
""" | |
We leave the `dataset.json` file in the same format as in the original SG2-ADA repo: | |
it's `labels` field is a hashmap of filename-label pairs. | |
""" | |
fname = 'dataset.json' | |
labels_files = [f for f in self._all_objects if f.endswith(fname)] | |
if len(labels_files) == 0: | |
return None | |
assert len(labels_files) == 1, f"There can be only a single {fname} file" | |
with self._open_file(labels_files[0]) as f: | |
labels = json.load(f)['labels'] | |
if labels is None: | |
return None | |
labels = dict(labels) | |
# The `dataset.json` file defines a label for each image and | |
# For the video dataset, this is both inconvenient and redundant. | |
# So let's redefine this | |
video_labels = {} | |
for filename, label in labels.items(): | |
dirname = os.path.dirname(filename) | |
if dirname in video_labels: | |
assert video_labels[dirname] == label | |
else: | |
video_labels[dirname] = label | |
labels = video_labels | |
labels = [labels[os.path.normpath(dname).split(os.path.sep)[-1]] for dname in self._video_dir2frames] | |
labels = np.array(labels) | |
if labels.dtype in NUMPY_INTEGER_TYPES: | |
labels = labels.astype(np.int64) | |
elif labels.dtype in NUMPY_FLOAT_TYPES: | |
labels = labels.astype(np.float32) | |
else: | |
raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}") | |
return labels | |
def __getitem__(self, idx: int) -> Dict: | |
if self.load_n_consecutive: | |
num_frames_available = len(self._video_idx2frames[self._raw_idx[idx]]) | |
assert num_frames_available - self.load_n_consecutive * self.subsample_factor >= 0, f"We have only {num_frames_available} frames available, cannot load {self.load_n_consecutive} frames." | |
if self.load_n_consecutive_random_offset: | |
random_offset = random.randint(0, num_frames_available - self.load_n_consecutive * self.subsample_factor + self.subsample_factor - 1) | |
else: | |
random_offset = 0 | |
frames_idx = np.arange(0, self.load_n_consecutive * self.subsample_factor, self.subsample_factor) + random_offset | |
else: | |
frames_idx = None | |
frames, times = self._load_raw_frames(self._raw_idx[idx], frames_idx=frames_idx) | |
assert isinstance(frames, np.ndarray) | |
assert list(frames[0].shape) == self.image_shape | |
assert frames.dtype == np.uint8 | |
assert len(frames) == len(times) | |
if self._xflip[idx]: | |
assert frames.ndim == 4 # TCHW | |
frames = frames[:, :, :, ::-1] | |
return { | |
'image': frames.copy(), | |
'label': self.get_label(idx), | |
'times': times, | |
'video_len': self.get_video_len(idx), | |
} | |
def get_video_len(self, idx: int) -> int: | |
return min(self.max_num_frames, len(self._video_idx2frames[self._raw_idx[idx]])) | |
def _load_raw_frames(self, raw_idx: int, frames_idx: List[int]=None) -> Tuple[np.ndarray, np.ndarray]: | |
frame_paths = self._video_idx2frames[raw_idx] | |
total_len = len(frame_paths) | |
offset = 0 | |
images = [] | |
if frames_idx is None: | |
assert not self.sampling_dict is None, f"The dataset was created without `cfg.sampling` config and cannot sample frames on its own." | |
if total_len > self.max_num_frames: | |
offset = random.randint(0, total_len - self.max_num_frames) | |
frames_idx = sample_frames(self.sampling_dict, total_video_len=min(total_len, self.max_num_frames)) + offset | |
else: | |
frames_idx = np.array(frames_idx) | |
for frame_idx in frames_idx: | |
with self._open_file(frame_paths[frame_idx]) as f: | |
images.append(load_image_from_buffer(f)) | |
return np.array(images), frames_idx - offset | |
def compute_max_num_frames(self) -> int: | |
return max(len(frames) for frames in self._video_idx2frames) | |
#---------------------------------------------------------------------------- | |
def load_image_from_buffer(f, use_pyspng: bool=False) -> np.ndarray: | |
if use_pyspng: | |
image = pyspng.load(f.read()) | |
else: | |
image = np.array(PIL.Image.open(f)) | |
if image.ndim == 2: | |
image = image[:, :, np.newaxis] # HW => HWC | |
image = image.transpose(2, 0, 1) # HWC => CHW | |
return image | |
#---------------------------------------------------------------------------- | |
def video_to_image_dataset_kwargs(video_dataset_kwargs: dnnlib.EasyDict) -> dnnlib.EasyDict: | |
"""Converts video dataset kwargs to image dataset kwargs""" | |
return dnnlib.EasyDict( | |
class_name='training.dataset.ImageFolderDataset', | |
path=video_dataset_kwargs.path, | |
use_labels=video_dataset_kwargs.use_labels, | |
xflip=video_dataset_kwargs.xflip, | |
resolution=video_dataset_kwargs.resolution, | |
random_seed=video_dataset_kwargs.get('random_seed'), | |
# Explicitly ignoring the max size, since we are now interested | |
# in the number of images instead of the number of videos | |
# max_size=video_dataset_kwargs.max_size, | |
) | |
#---------------------------------------------------------------------------- | |
def remove_root(fname: os.PathLike, root_name: os.PathLike): | |
"""`root_name` should NOT start with '/'""" | |
if fname == root_name or fname == ('/' + root_name): | |
return '' | |
elif fname.startswith(root_name + '/'): | |
return fname[len(root_name) + 1:] | |
elif fname.startswith('/' + root_name + '/'): | |
return fname[len(root_name) + 2:] | |
else: | |
return fname | |
#---------------------------------------------------------------------------- | |