Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -93,9 +93,10 @@ model = BertClassifier(base_model, log_reg, num_labels = N_UNIQUE_CLASSES)
|
|
93 |
# Define a function to process the DNA sequence
|
94 |
def analyze_dna(sequence):
|
95 |
# Preprocess the input sequence
|
96 |
-
inputs = tokenizer(sequence, return_tensors=
|
|
|
97 |
# Get model predictions
|
98 |
-
outputs = model(**inputs)
|
99 |
|
100 |
# Convert logits to probabilities
|
101 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1).squeeze().tolist()
|
@@ -107,7 +108,7 @@ def analyze_dna(sequence):
|
|
107 |
# Prepare the output as a list of tuples (class_index, probability)
|
108 |
result = [(index, prob) for index, prob in zip(top_5_indices, top_5_probs)]
|
109 |
|
110 |
-
return
|
111 |
|
112 |
# Create a Gradio interface
|
113 |
demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="json")
|
|
|
93 |
# Define a function to process the DNA sequence
|
94 |
def analyze_dna(sequence):
|
95 |
# Preprocess the input sequence
|
96 |
+
inputs = tokenizer(sequence, truncation=True, padding='max_length', max_length=512, return_tensors="pt", return_token_type_ids=False)
|
97 |
+
|
98 |
# Get model predictions
|
99 |
+
_, outputs = model(**inputs)
|
100 |
|
101 |
# Convert logits to probabilities
|
102 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1).squeeze().tolist()
|
|
|
108 |
# Prepare the output as a list of tuples (class_index, probability)
|
109 |
result = [(index, prob) for index, prob in zip(top_5_indices, top_5_probs)]
|
110 |
|
111 |
+
return probabilities
|
112 |
|
113 |
# Create a Gradio interface
|
114 |
demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="json")
|