Spaces:
Runtime error
Runtime error
1st draft
Browse files
app.py
CHANGED
@@ -16,87 +16,44 @@ from mmocr.apis import MMOCRInferencer
|
|
16 |
ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
|
17 |
|
18 |
url = (
|
19 |
-
"https://upload.wikimedia.org/wikipedia/commons/
|
20 |
)
|
21 |
-
path_input = "./
|
22 |
urllib.request.urlretrieve(url, filename=path_input)
|
23 |
|
24 |
-
url = "https://upload.wikimedia.org/wikipedia/commons/
|
25 |
-
path_input = "./
|
26 |
urllib.request.urlretrieve(url, filename=path_input)
|
27 |
|
28 |
-
# model = keras_model(weights="imagenet")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# ig = IntegratedGradients(
|
34 |
-
# model, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size
|
35 |
-
# )
|
36 |
|
|
|
|
|
|
|
37 |
|
38 |
def do_process(img):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# lstPreds[i][1]: round(float(lstPreds[i][2]), 2) for i in range(len(lstPreds))
|
47 |
-
# }
|
48 |
-
# predictions = preds.argmax(axis=1)
|
49 |
-
# if baseline == "white":
|
50 |
-
# baselines = bls = np.ones(instance.shape).astype(instance.dtype)
|
51 |
-
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
|
52 |
-
# elif baseline == "black":
|
53 |
-
# baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
|
54 |
-
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
|
55 |
-
# elif baseline == "blur":
|
56 |
-
# img_flt = img.filter(ImageFilter.GaussianBlur(5))
|
57 |
-
# baselines = image.img_to_array(img_flt)
|
58 |
-
# baselines = np.expand_dims(baselines, axis=0)
|
59 |
-
# baselines = preprocess_input(baselines)
|
60 |
-
# else:
|
61 |
-
# baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
|
62 |
-
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
|
63 |
-
# explanation = ig.explain(instance, baselines=baselines, target=predictions)
|
64 |
-
# attrs = explanation.attributions[0]
|
65 |
-
# fig, ax = visualize_image_attr(
|
66 |
-
# attr=attrs.squeeze(),
|
67 |
-
# original_image=img,
|
68 |
-
# method="blended_heat_map",
|
69 |
-
# sign="all",
|
70 |
-
# show_colorbar=True,
|
71 |
-
# title=baseline,
|
72 |
-
# plt_fig_axis=None,
|
73 |
-
# use_pyplot=False,
|
74 |
-
# )
|
75 |
-
# fig.tight_layout()
|
76 |
-
# buf = io.BytesIO()
|
77 |
-
# fig.savefig(buf)
|
78 |
-
# buf.seek(0)
|
79 |
-
# img_res = Image.open(buf)
|
80 |
-
# return img_res, img_flt, dctPreds
|
81 |
-
|
82 |
|
83 |
input_im = gr.inputs.Image(
|
84 |
-
shape=
|
85 |
)
|
86 |
-
# input_drop = gr.inputs.Dropdown(
|
87 |
-
# label="Baseline (default: random)",
|
88 |
-
# choices=["random", "black", "white", "blur"],
|
89 |
-
# default="random",
|
90 |
-
# type="value",
|
91 |
-
# )
|
92 |
|
93 |
output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
|
94 |
# output_base = gr.outputs.Image(label="Baseline image", type="pil")
|
95 |
# output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
|
96 |
|
97 |
-
title = "
|
98 |
-
description = "Playground:
|
99 |
-
examples = [["./
|
100 |
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
|
101 |
iface = gr.Interface(
|
102 |
fn=do_process,
|
|
|
16 |
ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
|
17 |
|
18 |
url = (
|
19 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg/1600px-Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg"
|
20 |
)
|
21 |
+
path_input = "./example1.jpg"
|
22 |
urllib.request.urlretrieve(url, filename=path_input)
|
23 |
|
24 |
+
url = "https://upload.wikimedia.org/wikipedia/commons/3/3e/733_how-deep.jpg"
|
25 |
+
path_input = "./example2.jpg"
|
26 |
urllib.request.urlretrieve(url, filename=path_input)
|
27 |
|
|
|
28 |
|
29 |
+
path_img_output_folder = "./demo-out"
|
30 |
+
if not os.path.exists(path_img_output_folder):
|
31 |
+
os.makedirs(path_img_output_folder)
|
|
|
|
|
|
|
32 |
|
33 |
+
path_img_input_folder = "./demo-input"
|
34 |
+
if not os.path.exists(path_img_input_folder):
|
35 |
+
os.makedirs(path_img_input_folder)
|
36 |
|
37 |
def do_process(img):
|
38 |
+
img_name = 'tmp.jpg'
|
39 |
+
img.save(path_input)
|
40 |
+
path_input = os.path.join(path_img_input_folder, img_name)
|
41 |
+
path_output = os.path.join(path_img_output_folder, 'vis',img_name)
|
42 |
+
result = ocr(path_input, out_dir=path_img_output_folder, save_vis=True)
|
43 |
+
img_res = Image(filename=path_output)
|
44 |
+
return img_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
input_im = gr.inputs.Image(
|
47 |
+
shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil"
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
|
51 |
# output_base = gr.outputs.Image(label="Baseline image", type="pil")
|
52 |
# output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
|
53 |
|
54 |
+
title = "Reading draught marks"
|
55 |
+
description = "Playground: Reading draught marks using pre-trained models. Tools: MMOCR, Gradio."
|
56 |
+
examples = [["./example1.jpg"], ["./example2.jpg"]]
|
57 |
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
|
58 |
iface = gr.Interface(
|
59 |
fn=do_process,
|