Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from alibi.explainers import IntegratedGradients
|
|
7 |
from alibi.datasets import load_cats
|
8 |
from alibi.utils.visualization import visualize_image_attr
|
9 |
import numpy as np
|
10 |
-
from PIL import Image
|
11 |
import io
|
12 |
import time
|
13 |
import os
|
@@ -46,34 +46,42 @@ def do_process(img, baseline):
|
|
46 |
lstPreds = decode_predictions(preds, top=3)[0]
|
47 |
dctPreds = {lstPreds[i][1]: round(float(lstPreds[i][2]),2) for i in range(len(lstPreds))}
|
48 |
predictions = preds.argmax(axis=1)
|
49 |
-
if baseline
|
50 |
baselines = bls = np.ones(instance.shape).astype(instance.dtype)
|
51 |
-
|
|
|
52 |
baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
else:
|
54 |
baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
|
|
|
55 |
explanation = ig.explain(instance,
|
56 |
baselines=baselines,
|
57 |
target=predictions)
|
58 |
attrs = explanation.attributions[0]
|
59 |
-
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 10))
|
60 |
fig, ax = visualize_image_attr(attr=attrs.squeeze(), original_image=img, method='blended_heat_map',
|
61 |
-
sign='all', show_colorbar=True, title=
|
62 |
-
plt_fig_axis=
|
63 |
fig.tight_layout()
|
64 |
buf = io.BytesIO()
|
65 |
fig.savefig(buf)
|
66 |
buf.seek(0)
|
67 |
img_res = Image.open(buf)
|
68 |
-
return img_res, dctPreds
|
69 |
-
|
70 |
input_im = gr.inputs.Image(shape=(224, 224), image_mode='RGB',
|
71 |
invert_colors=False, source="upload",
|
72 |
type="pil")
|
73 |
input_drop = gr.inputs.Dropdown(label='Baseline (default: random)',
|
74 |
-
choices=['black', 'white', '
|
75 |
|
76 |
output_img = gr.outputs.Image(label='Output of Integrated Gradients', type='pil')
|
|
|
77 |
output_label = gr.outputs.Label(label='Classification results', num_top_classes=3)
|
78 |
|
79 |
title = "XAI - Integrated gradients"
|
@@ -83,7 +91,7 @@ article="<p style='text-align: center'><a href='https://github.com/mawady/colab-
|
|
83 |
iface = gr.Interface(
|
84 |
fn=do_process,
|
85 |
inputs=[input_im, input_drop],
|
86 |
-
outputs=[output_img,output_label]
|
87 |
live=False,
|
88 |
interpretation=None,
|
89 |
title=title,
|
|
|
7 |
from alibi.datasets import load_cats
|
8 |
from alibi.utils.visualization import visualize_image_attr
|
9 |
import numpy as np
|
10 |
+
from PIL import Image, ImageFilter
|
11 |
import io
|
12 |
import time
|
13 |
import os
|
|
|
46 |
lstPreds = decode_predictions(preds, top=3)[0]
|
47 |
dctPreds = {lstPreds[i][1]: round(float(lstPreds[i][2]),2) for i in range(len(lstPreds))}
|
48 |
predictions = preds.argmax(axis=1)
|
49 |
+
if baseline == 'white':
|
50 |
baselines = bls = np.ones(instance.shape).astype(instance.dtype)
|
51 |
+
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
|
52 |
+
elif baseline == 'black':
|
53 |
baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
|
54 |
+
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
|
55 |
+
elif baseline == 'blur':
|
56 |
+
img_flt = img.filter(ImageFilter.GaussianBlur(5))
|
57 |
+
baselines = image.img_to_array(img_flt)
|
58 |
+
baselines = np.expand_dims(baselines, axis=0)
|
59 |
+
baselines = preprocess_input(baselines)
|
60 |
else:
|
61 |
baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
|
62 |
+
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
|
63 |
explanation = ig.explain(instance,
|
64 |
baselines=baselines,
|
65 |
target=predictions)
|
66 |
attrs = explanation.attributions[0]
|
|
|
67 |
fig, ax = visualize_image_attr(attr=attrs.squeeze(), original_image=img, method='blended_heat_map',
|
68 |
+
sign='all', show_colorbar=True, title=baseline,
|
69 |
+
plt_fig_axis=None, use_pyplot=False)
|
70 |
fig.tight_layout()
|
71 |
buf = io.BytesIO()
|
72 |
fig.savefig(buf)
|
73 |
buf.seek(0)
|
74 |
img_res = Image.open(buf)
|
75 |
+
return img_res, img_flt, dctPreds
|
76 |
+
|
77 |
input_im = gr.inputs.Image(shape=(224, 224), image_mode='RGB',
|
78 |
invert_colors=False, source="upload",
|
79 |
type="pil")
|
80 |
input_drop = gr.inputs.Dropdown(label='Baseline (default: random)',
|
81 |
+
choices=['random', 'black', 'white', 'blur'], default='random', type='value')
|
82 |
|
83 |
output_img = gr.outputs.Image(label='Output of Integrated Gradients', type='pil')
|
84 |
+
output_base = gr.outputs.Image(label='Baseline image', type='pil')
|
85 |
output_label = gr.outputs.Label(label='Classification results', num_top_classes=3)
|
86 |
|
87 |
title = "XAI - Integrated gradients"
|
|
|
91 |
iface = gr.Interface(
|
92 |
fn=do_process,
|
93 |
inputs=[input_im, input_drop],
|
94 |
+
outputs=[output_img,output_base,output_label]
|
95 |
live=False,
|
96 |
interpretation=None,
|
97 |
title=title,
|