Spaces:
Runtime error
Runtime error
Rewrite locally
Browse files- app.py +35 -15
- requirements.txt +8 -7
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM,
|
| 2 |
from trl import SFTTrainer, SFTConfig
|
| 3 |
from datasets import load_dataset
|
| 4 |
from peft import LoraConfig, get_peft_model
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
# -------------------------
|
| 8 |
# Load dataset
|
|
@@ -13,37 +14,56 @@ dataset = load_dataset("mavilov/convos", split="train")
|
|
| 13 |
# Load model and tokenizer
|
| 14 |
# -------------------------
|
| 15 |
model_id = "swiss-ai/Apertus-8B-2509"
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
model_id,
|
| 26 |
-
|
| 27 |
-
device_map="auto"
|
| 28 |
)
|
| 29 |
model.config.use_cache = False
|
| 30 |
model.config.pretraining_tp = 1
|
| 31 |
|
| 32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 33 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 34 |
-
|
| 35 |
# -------------------------
|
| 36 |
# Attach LoRA adapters
|
| 37 |
# -------------------------
|
| 38 |
lora_config = LoraConfig(
|
| 39 |
r=16,
|
| 40 |
lora_alpha=32,
|
| 41 |
-
target_modules=["q_proj", "v_proj"],
|
| 42 |
lora_dropout=0.05,
|
| 43 |
bias="none",
|
| 44 |
task_type="CAUSAL_LM"
|
| 45 |
)
|
| 46 |
-
|
| 47 |
model = get_peft_model(model, lora_config)
|
| 48 |
|
| 49 |
# -------------------------
|
|
@@ -76,7 +96,7 @@ training_args = SFTConfig(
|
|
| 76 |
num_train_epochs=3,
|
| 77 |
logging_steps=10,
|
| 78 |
report_to="tensorboard",
|
| 79 |
-
bf16=False,
|
| 80 |
)
|
| 81 |
|
| 82 |
# -------------------------
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq
|
| 2 |
from trl import SFTTrainer, SFTConfig
|
| 3 |
from datasets import load_dataset
|
| 4 |
from peft import LoraConfig, get_peft_model
|
| 5 |
import torch
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
# -------------------------
|
| 9 |
# Load dataset
|
|
|
|
| 14 |
# Load model and tokenizer
|
| 15 |
# -------------------------
|
| 16 |
model_id = "swiss-ai/Apertus-8B-2509"
|
| 17 |
+
model_kwargs = {}
|
| 18 |
|
| 19 |
+
if torch.backends.mps.is_available():
|
| 20 |
+
print("⚡ Using Apple MPS backend (Metal)")
|
| 21 |
+
model_kwargs = {
|
| 22 |
+
"dtype": torch.float16,
|
| 23 |
+
"device_map": {"": "mps"}, # force load directly on MPS
|
| 24 |
+
"offload_folder": "./offload",
|
| 25 |
+
"low_cpu_mem_usage": True, # avoid meta tensors
|
| 26 |
+
}
|
| 27 |
+
elif torch.cuda.is_available():
|
| 28 |
+
print("⚡ Using CUDA with bitsandbytes quantization")
|
| 29 |
+
from transformers import BitsAndBytesConfig
|
| 30 |
+
bnb_config = BitsAndBytesConfig(
|
| 31 |
+
load_in_8bit=True,
|
| 32 |
+
llm_int8_threshold=6.0
|
| 33 |
+
)
|
| 34 |
+
model_kwargs["quantization_config"] = bnb_config
|
| 35 |
+
model_kwargs["device_map"] = "auto"
|
| 36 |
+
else:
|
| 37 |
+
print("⚠️ No GPU/MPS detected, running on CPU (very slow)")
|
| 38 |
+
model_kwargs = {
|
| 39 |
+
"dtype": torch.float32,
|
| 40 |
+
"device_map": {"": "cpu"},
|
| 41 |
+
"low_cpu_mem_usage": True,
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Load tokenizer
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 46 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 47 |
|
| 48 |
+
# Load model safely
|
| 49 |
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
model_id,
|
| 51 |
+
**model_kwargs
|
|
|
|
| 52 |
)
|
| 53 |
model.config.use_cache = False
|
| 54 |
model.config.pretraining_tp = 1
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
# -------------------------
|
| 57 |
# Attach LoRA adapters
|
| 58 |
# -------------------------
|
| 59 |
lora_config = LoraConfig(
|
| 60 |
r=16,
|
| 61 |
lora_alpha=32,
|
| 62 |
+
target_modules=["q_proj", "v_proj"],
|
| 63 |
lora_dropout=0.05,
|
| 64 |
bias="none",
|
| 65 |
task_type="CAUSAL_LM"
|
| 66 |
)
|
|
|
|
| 67 |
model = get_peft_model(model, lora_config)
|
| 68 |
|
| 69 |
# -------------------------
|
|
|
|
| 96 |
num_train_epochs=3,
|
| 97 |
logging_steps=10,
|
| 98 |
report_to="tensorboard",
|
| 99 |
+
bf16=False,
|
| 100 |
)
|
| 101 |
|
| 102 |
# -------------------------
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
torch
|
| 2 |
-
transformers
|
| 3 |
-
datasets
|
| 4 |
accelerate>=0.26.0
|
| 5 |
-
trl
|
| 6 |
-
bitsandbytes
|
| 7 |
-
peft
|
| 8 |
-
tensorboard
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
datasets
|
| 4 |
accelerate>=0.26.0
|
| 5 |
+
trl
|
| 6 |
+
bitsandbytes
|
| 7 |
+
peft
|
| 8 |
+
tensorboard
|
| 9 |
+
huggingface_hub
|