Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
from PIL import Image
|
4 |
import google.generativeai as genai
|
5 |
-
from dotenv import load_dotenv
|
6 |
import os
|
|
|
7 |
|
8 |
load_dotenv()
|
9 |
api_key = os.getenv('api_key')
|
@@ -17,13 +17,13 @@ def extract_frames(video_path, fps=30):
|
|
17 |
raise ValueError("Error: Unable to open video file.")
|
18 |
|
19 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
20 |
-
if original_fps
|
21 |
-
raise ValueError("Error: Unable to retrieve FPS from video file.")
|
22 |
-
|
23 |
-
frame_interval = int(original_fps // fps)
|
24 |
frame_count = 0
|
25 |
success, frame = cap.read()
|
26 |
-
|
27 |
while success:
|
28 |
if frame_count % frame_interval == 0:
|
29 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
@@ -31,11 +31,12 @@ def extract_frames(video_path, fps=30):
|
|
31 |
frames.append(pil_image)
|
32 |
frame_count += 1
|
33 |
success, frame = cap.read()
|
34 |
-
|
35 |
cap.release()
|
|
|
36 |
if len(frames) == 0:
|
37 |
raise ValueError("Error: No frames extracted from the video.")
|
38 |
-
|
39 |
return frames
|
40 |
|
41 |
def generate_prompt(button_list):
|
@@ -46,7 +47,7 @@ def generate_prompt(button_list):
|
|
46 |
"- What the button is supposed to do.\n\n"
|
47 |
"Preconditions\n"
|
48 |
"- Any requirements before interaction.\n\n"
|
49 |
-
"
|
50 |
"- Concise steps for executing the test.\n\n"
|
51 |
"Expected Results\n"
|
52 |
"- What the expected outcome should be.\n\n"
|
@@ -55,31 +56,32 @@ def generate_prompt(button_list):
|
|
55 |
"Format the output clearly for easy readability, using bullet points for key details."
|
56 |
)
|
57 |
|
58 |
-
|
59 |
def process_video(video_file, buttons_to_test):
|
60 |
try:
|
61 |
video_path = "uploaded_video.mp4"
|
62 |
with open(video_path, "wb") as f:
|
63 |
-
f.write(video_file)
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
button_list = [button.strip() for button in buttons_to_test.split(",")]
|
68 |
prompt = generate_prompt(button_list)
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
output_text = response.text if hasattr(response, 'text') else "Error: Invalid response from the model."
|
73 |
output_text = output_text.replace("Functionality", "📋 Functionality")
|
74 |
output_text = output_text.replace("Preconditions", "🔍 Preconditions")
|
75 |
output_text = output_text.replace("Test Steps", "📝 Test Steps")
|
76 |
output_text = output_text.replace("Expected Results", "✅ Expected Results")
|
77 |
output_text = output_text.replace("Automated Testing Tools", "🛠️ Automated Testing Tools")
|
78 |
-
|
79 |
return output_text
|
80 |
-
|
81 |
except Exception as e:
|
82 |
-
return str(e)
|
83 |
|
84 |
iface = gr.Interface(
|
85 |
fn=process_video,
|
@@ -93,5 +95,3 @@ iface = gr.Interface(
|
|
93 |
)
|
94 |
|
95 |
iface.launch(share=True)
|
96 |
-
|
97 |
-
|
|
|
2 |
import cv2
|
3 |
from PIL import Image
|
4 |
import google.generativeai as genai
|
|
|
5 |
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
|
8 |
load_dotenv()
|
9 |
api_key = os.getenv('api_key')
|
|
|
17 |
raise ValueError("Error: Unable to open video file.")
|
18 |
|
19 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
20 |
+
if original_fps <= 0:
|
21 |
+
raise ValueError("Error: Unable to retrieve valid FPS from video file.")
|
22 |
+
|
23 |
+
frame_interval = max(1, int(original_fps // fps))
|
24 |
frame_count = 0
|
25 |
success, frame = cap.read()
|
26 |
+
|
27 |
while success:
|
28 |
if frame_count % frame_interval == 0:
|
29 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
31 |
frames.append(pil_image)
|
32 |
frame_count += 1
|
33 |
success, frame = cap.read()
|
34 |
+
|
35 |
cap.release()
|
36 |
+
|
37 |
if len(frames) == 0:
|
38 |
raise ValueError("Error: No frames extracted from the video.")
|
39 |
+
|
40 |
return frames
|
41 |
|
42 |
def generate_prompt(button_list):
|
|
|
47 |
"- What the button is supposed to do.\n\n"
|
48 |
"Preconditions\n"
|
49 |
"- Any requirements before interaction.\n\n"
|
50 |
+
"Test Steps\n"
|
51 |
"- Concise steps for executing the test.\n\n"
|
52 |
"Expected Results\n"
|
53 |
"- What the expected outcome should be.\n\n"
|
|
|
56 |
"Format the output clearly for easy readability, using bullet points for key details."
|
57 |
)
|
58 |
|
|
|
59 |
def process_video(video_file, buttons_to_test):
|
60 |
try:
|
61 |
video_path = "uploaded_video.mp4"
|
62 |
with open(video_path, "wb") as f:
|
63 |
+
f.write(video_file)
|
64 |
+
|
65 |
+
frames = extract_frames(video_path, fps=15)
|
66 |
+
frames_to_pass = frames[::10] # use every 10th frame
|
67 |
+
|
68 |
button_list = [button.strip() for button in buttons_to_test.split(",")]
|
69 |
prompt = generate_prompt(button_list)
|
70 |
+
|
71 |
+
frame_prompts = [frame for frame in frames_to_pass]
|
72 |
+
response = genai.GenerativeModel(model_name="gemini-1.5-pro-latest").generate_content([prompt] + frame_prompts)
|
73 |
+
|
74 |
output_text = response.text if hasattr(response, 'text') else "Error: Invalid response from the model."
|
75 |
output_text = output_text.replace("Functionality", "📋 Functionality")
|
76 |
output_text = output_text.replace("Preconditions", "🔍 Preconditions")
|
77 |
output_text = output_text.replace("Test Steps", "📝 Test Steps")
|
78 |
output_text = output_text.replace("Expected Results", "✅ Expected Results")
|
79 |
output_text = output_text.replace("Automated Testing Tools", "🛠️ Automated Testing Tools")
|
80 |
+
|
81 |
return output_text
|
82 |
+
|
83 |
except Exception as e:
|
84 |
+
return f"Error occurred: {str(e)}"
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=process_video,
|
|
|
95 |
)
|
96 |
|
97 |
iface.launch(share=True)
|
|
|
|