Matyáš Boháček
Initial commit
ccdf9bb
raw
history blame
13.7 kB
import os
import argparse
import random
import logging
import torch
import wandb
import numpy as np
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from torchvision import transforms
from torch.utils.data import DataLoader
from pathlib import Path
from utils import __balance_val_split, __split_of_train_sequence
from datasets.czech_slr_dataset import CzechSLRDataset
from spoter.spoter_model import SPOTER
from spoter.utils import train_epoch, evaluate
from spoter.gaussian_noise import GaussianNoise
def get_default_args():
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("--experiment_name", type=str, default="lsa_64_spoter",
help="Name of the experiment after which the logs and plots will be named")
parser.add_argument("--num_classes", type=int, default=64, help="Number of classes to be recognized by the model")
parser.add_argument("--hidden_dim", type=int, default=108,
help="Hidden dimension of the underlying Transformer model")
parser.add_argument("--seed", type=int, default=379,
help="Seed with which to initialize all the random components of the training")
# Data
parser.add_argument("--training_set_path", type=str, default="", help="Path to the training dataset CSV file")
parser.add_argument("--testing_set_path", type=str, default="", help="Path to the testing dataset CSV file")
parser.add_argument("--experimental_train_split", type=float, default=None,
help="Determines how big a portion of the training set should be employed (intended for the "
"gradually enlarging training set experiment from the paper)")
parser.add_argument("--validation_set", type=str, choices=["from-file", "split-from-train", "none"],
default="from-file", help="Type of validation set construction. See README for further rederence")
parser.add_argument("--validation_set_size", type=float,
help="Proportion of the training set to be split as validation set, if 'validation_size' is set"
" to 'split-from-train'")
parser.add_argument("--validation_set_path", type=str, default="", help="Path to the validation dataset CSV file")
# Training hyperparameters
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs to train the model for")
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate for the model training")
parser.add_argument("--log_freq", type=int, default=1,
help="Log frequency (frequency of printing all the training info)")
# Checkpointing
parser.add_argument("--save_checkpoints", type=bool, default=True,
help="Determines whether to save weights checkpoints")
# Scheduler
parser.add_argument("--scheduler_factor", type=int, default=0.1, help="Factor for the ReduceLROnPlateau scheduler")
parser.add_argument("--scheduler_patience", type=int, default=5,
help="Patience for the ReduceLROnPlateau scheduler")
# Gaussian noise normalization
parser.add_argument("--gaussian_mean", type=int, default=0, help="Mean parameter for Gaussian noise layer")
parser.add_argument("--gaussian_std", type=int, default=0.001,
help="Standard deviation parameter for Gaussian noise layer")
parser.add_argument("--augmentations_probability", type=float, default=0.5, help="") # 0.462
parser.add_argument("--rotate_angle", type=int, default=17, help="") # 17
parser.add_argument("--perspective_transform_ratio", type=float, default=0.2, help="") # 0.1682
parser.add_argument("--squeeze_ratio", type=float, default=0.4, help="") # 0.3971
parser.add_argument("--arm_joint_rotate_angle", type=int, default=4, help="") # 3
parser.add_argument("--arm_joint_rotate_probability", type=float, default=0.4, help="") # 0.3596
# Visualization
parser.add_argument("--plot_stats", type=bool, default=True,
help="Determines whether continuous statistics should be plotted at the end")
parser.add_argument("--plot_lr", type=bool, default=True,
help="Determines whether the LR should be plotted at the end")
# WANDB
parser.add_argument("--wandb_key", type=str, default="", help="")
parser.add_argument("--wandb_entity", type=str, default="", help="")
return parser
def train(args):
if args.wandb_key:
wandb.login(key=args.wandb_key)
wandb.init(project=args.experiment_name, entity=args.wandb_entity)
wandb.config.update(args)
# MARK: TRAINING PREPARATION AND MODULES
args.experiment_name = args.experiment_name + "_lr" + wandb.run.id
# Initialize all the random seeds
random.seed(args.seed)
np.random.seed(args.seed)
os.environ["PYTHONHASHSEED"] = str(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
g = torch.Generator()
g.manual_seed(args.seed)
# Set the output format to print into the console and save into LOG file
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler(args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + ".log")
]
)
# Set device to CUDA only if applicable
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
# Construct the model
slrt_model = SPOTER(num_classes=args.num_classes, hidden_dim=args.hidden_dim)
slrt_model.train(True)
slrt_model.to(device)
# Construct the other modules
cel_criterion = nn.CrossEntropyLoss()
sgd_optimizer = optim.SGD(slrt_model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(sgd_optimizer, factor=args.scheduler_factor, patience=args.scheduler_patience)
# Ensure that the path for checkpointing and for images both exist
Path("out-checkpoints/" + args.experiment_name + "/").mkdir(parents=True, exist_ok=True)
Path("out-img/").mkdir(parents=True, exist_ok=True)
# MARK: DATA
# Training set
transform = transforms.Compose([GaussianNoise(args.gaussian_mean, args.gaussian_std)])
augmentations_config = {
"rotate-angle": args.rotate_angle,
"perspective-transform-ratio": args.perspective_transform_ratio,
"squeeze-ratio": args.squeeze_ratio,
"arm-joint-rotate-angle": args.arm_joint_rotate_angle,
"arm-joint-rotate-probability": args.arm_joint_rotate_probability
}
train_set = CzechSLRDataset(args.training_set_path, transform=transform, augmentations=True,
augmentations_prob=args.augmentations_probability, augmentations_config=augmentations_config)
# Validation set
if args.validation_set == "from-file":
val_set = CzechSLRDataset(args.validation_set_path)
val_loader = DataLoader(val_set, shuffle=True, generator=g)
elif args.validation_set == "split-from-train":
train_set, val_set = __balance_val_split(train_set, 0.2)
val_set.transform = None
val_set.augmentations = False
val_loader = DataLoader(val_set, shuffle=True, generator=g)
else:
val_loader = None
# Testing set
if args.testing_set_path:
eval_set = CzechSLRDataset(args.testing_set_path)
eval_loader = DataLoader(eval_set, shuffle=True, generator=g)
else:
eval_loader = None
# Final training set refinements
if args.experimental_train_split:
train_set = __split_of_train_sequence(train_set, args.experimental_train_split)
train_loader = DataLoader(train_set, shuffle=True, generator=g)
# MARK: TRAINING
train_acc, val_acc = 0, 0
losses, train_accs, val_accs = [], [], []
lr_progress = []
top_train_acc, top_val_acc = 0, 0
checkpoint_index = 0
if args.experimental_train_split:
print("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n")
logging.info("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n")
else:
print("Starting " + args.experiment_name + "...\n\n")
logging.info("Starting " + args.experiment_name + "...\n\n")
for epoch in range(args.epochs):
train_loss, _, _, train_acc = train_epoch(slrt_model, train_loader, cel_criterion, sgd_optimizer, device)
losses.append(train_loss.item() / len(train_loader))
train_accs.append(train_acc)
if val_loader:
slrt_model.train(False)
_, _, val_acc = evaluate(slrt_model, val_loader, device)
slrt_model.train(True)
val_accs.append(val_acc)
# Save checkpoints if they are best in the current subset
if args.save_checkpoints:
if train_acc > top_train_acc:
top_train_acc = train_acc
torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_t_" + str(checkpoint_index) + ".pth")
if val_acc > top_val_acc:
top_val_acc = val_acc
torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_v_" + str(checkpoint_index) + ".pth")
if epoch % args.log_freq == 0:
print("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc))
logging.info("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc))
wandb.log({
"epoch": int(epoch + 1),
"train-loss": float(train_loss.item() / len(train_loader)),
"train-accuracy": train_acc
})
if val_loader:
print("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc))
logging.info("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc))
if args.wandb_key:
wandb.log({
"validation-accuracy": val_acc
})
print("")
logging.info("")
# Reset the top accuracies on static subsets
if epoch % 10 == 0:
top_train_acc, top_val_acc = 0, 0
checkpoint_index += 1
lr_progress.append(sgd_optimizer.param_groups[0]["lr"])
# MARK: TESTING
print("\nTesting checkpointed models starting...\n")
logging.info("\nTesting checkpointed models starting...\n")
top_result, top_result_name = 0, ""
if eval_loader:
for i in range(checkpoint_index):
for checkpoint_id in ["t", "v"]:
# tested_model = VisionTransformer(dim=2, mlp_dim=108, num_classes=100, depth=12, heads=8)
tested_model = torch.load("out-checkpoints/" + args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i) + ".pth")
tested_model.train(False)
_, _, eval_acc = evaluate(tested_model, eval_loader, device, print_stats=True)
if eval_acc > top_result:
top_result = eval_acc
top_result_name = args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i)
print("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc))
logging.info("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc))
print("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".")
logging.info("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".")
if args.wandb_key:
wandb.run.summary["best-accuracy"] = top_result
wandb.run.summary["best-checkpoint"] = top_result_name
# PLOT 0: Performance (loss, accuracies) chart plotting
if args.plot_stats:
fig, ax = plt.subplots()
ax.plot(range(1, len(losses) + 1), losses, c="#D64436", label="Training loss")
ax.plot(range(1, len(train_accs) + 1), train_accs, c="#00B09B", label="Training accuracy")
if val_loader:
ax.plot(range(1, len(val_accs) + 1), val_accs, c="#E0A938", label="Validation accuracy")
ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
ax.set(xlabel="Epoch", ylabel="Accuracy / Loss", title="")
plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.05), ncol=4, fancybox=True, shadow=True, fontsize="xx-small")
ax.grid()
fig.savefig("out-img/" + args.experiment_name + "_loss.png")
# PLOT 1: Learning rate progress
if args.plot_lr:
fig1, ax1 = plt.subplots()
ax1.plot(range(1, len(lr_progress) + 1), lr_progress, label="LR")
ax1.set(xlabel="Epoch", ylabel="LR", title="")
ax1.grid()
fig1.savefig("out-img/" + args.experiment_name + "_lr.png")
print("\nAny desired statistics have been plotted.\nThe experiment is finished.")
logging.info("\nAny desired statistics have been plotted.\nThe experiment is finished.")
if __name__ == '__main__':
parser = argparse.ArgumentParser("", parents=[get_default_args()], add_help=False)
args = parser.parse_args()
train(args)