Spaces:
Runtime error
Runtime error
mattyamonaca
commited on
Commit
·
7eecfbf
1
Parent(s):
bfea134
fix pipe
Browse files- app.py +31 -3
- sd_model.py +8 -43
app.py
CHANGED
@@ -11,6 +11,7 @@ import os
|
|
11 |
import numpy as np
|
12 |
from PIL import Image
|
13 |
import zipfile
|
|
|
14 |
|
15 |
path = os.getcwd()
|
16 |
output_dir = f"{path}/output"
|
@@ -19,6 +20,36 @@ cn_lineart_dir = f"{path}/controlnet/lineart"
|
|
19 |
|
20 |
load_cn_model(cn_lineart_dir)
|
21 |
load_cn_config(cn_lineart_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
def zip_png_files(folder_path):
|
@@ -60,7 +91,6 @@ def resize_image(img, max_size=1024):
|
|
60 |
return img
|
61 |
|
62 |
|
63 |
-
|
64 |
class webui:
|
65 |
def __init__(self):
|
66 |
self.demo = gr.Blocks()
|
@@ -75,9 +105,7 @@ class webui:
|
|
75 |
image[index] = [255, 255, 255, 255]
|
76 |
input_image = cv2pil(image)
|
77 |
|
78 |
-
pipe = get_cn_pipeline(reference_flg)
|
79 |
detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))
|
80 |
-
|
81 |
|
82 |
gen_image = generate(pipe, detectors, pos_prompt, neg_prompt, reference_flg, reference_img)
|
83 |
color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness)
|
|
|
11 |
import numpy as np
|
12 |
from PIL import Image
|
13 |
import zipfile
|
14 |
+
import spaces
|
15 |
|
16 |
path = os.getcwd()
|
17 |
output_dir = f"{path}/output"
|
|
|
20 |
|
21 |
load_cn_model(cn_lineart_dir)
|
22 |
load_cn_config(cn_lineart_dir)
|
23 |
+
pipe = get_cn_pipeline()
|
24 |
+
|
25 |
+
@spaces.GPU(duration=120)
|
26 |
+
def generate(detectors, prompt, negative_prompt, reference_flg=False, reference_img=None):
|
27 |
+
default_pos = ""
|
28 |
+
default_neg = ""
|
29 |
+
prompt = default_pos + prompt
|
30 |
+
negative_prompt = default_neg + negative_prompt
|
31 |
+
|
32 |
+
|
33 |
+
if reference_flg==False:
|
34 |
+
image = pipe(
|
35 |
+
prompt=prompt,
|
36 |
+
negative_prompt = negative_prompt,
|
37 |
+
image=detectors,
|
38 |
+
num_inference_steps=50,
|
39 |
+
controlnet_conditioning_scale=[1.0, 0.2],
|
40 |
+
ip_adapter_image=None,
|
41 |
+
).images[0]
|
42 |
+
else:
|
43 |
+
|
44 |
+
image = pipe(
|
45 |
+
prompt=prompt,
|
46 |
+
negative_prompt = negative_prompt,
|
47 |
+
image=detectors,
|
48 |
+
num_inference_steps=50,
|
49 |
+
controlnet_conditioning_scale=[1.0, 0.2],
|
50 |
+
ip_adapter_image=reference_img,
|
51 |
+
).images[0]
|
52 |
+
return image
|
53 |
|
54 |
|
55 |
def zip_png_files(folder_path):
|
|
|
91 |
return img
|
92 |
|
93 |
|
|
|
94 |
class webui:
|
95 |
def __init__(self):
|
96 |
self.demo = gr.Blocks()
|
|
|
105 |
image[index] = [255, 255, 255, 255]
|
106 |
input_image = cv2pil(image)
|
107 |
|
|
|
108 |
detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))
|
|
|
109 |
|
110 |
gen_image = generate(pipe, detectors, pos_prompt, neg_prompt, reference_flg, reference_img)
|
111 |
color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness)
|
sd_model.py
CHANGED
@@ -2,11 +2,11 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCM
|
|
2 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
|
3 |
import torch
|
4 |
import pickle as pkl
|
5 |
-
|
6 |
|
7 |
device = "cuda"
|
8 |
|
9 |
-
def get_cn_pipeline(
|
10 |
controlnets = [
|
11 |
ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True),
|
12 |
ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16)
|
@@ -16,6 +16,11 @@ def get_cn_pipeline(reference_flg):
|
|
16 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
17 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
|
18 |
)
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
return pipe
|
21 |
|
@@ -30,47 +35,7 @@ def invert_image(img):
|
|
30 |
|
31 |
|
32 |
def get_cn_detector(image):
|
33 |
-
|
34 |
-
#canny = CannyDetector()
|
35 |
-
#lineart_anime_img = lineart_anime(image)
|
36 |
-
#canny_img = canny(image)
|
37 |
-
#canny_img = canny_img.resize((lineart_anime(image).width, lineart_anime(image).height))
|
38 |
-
re_image = invert_image(image)
|
39 |
-
|
40 |
-
|
41 |
detectors = [re_image, image]
|
42 |
-
print(detectors)
|
43 |
return detectors
|
44 |
|
45 |
-
@spaces.GPU(duration=120)
|
46 |
-
def generate(pipe, detectors, prompt, negative_prompt, reference_flg=False, reference_img=None):
|
47 |
-
pipe.to("cuda")
|
48 |
-
default_pos = ""
|
49 |
-
default_neg = ""
|
50 |
-
prompt = default_pos + prompt
|
51 |
-
negative_prompt = default_neg + negative_prompt
|
52 |
-
|
53 |
-
|
54 |
-
if reference_flg==False:
|
55 |
-
image = pipe(
|
56 |
-
prompt=prompt,
|
57 |
-
negative_prompt = negative_prompt,
|
58 |
-
image=detectors,
|
59 |
-
num_inference_steps=50,
|
60 |
-
controlnet_conditioning_scale=[1.0, 0.2],
|
61 |
-
).images[0]
|
62 |
-
else:
|
63 |
-
pipe.load_ip_adapter(
|
64 |
-
"ozzygt/sdxl-ip-adapter",
|
65 |
-
"",
|
66 |
-
weight_name="ip-adapter_sdxl_vit-h.safetensors")
|
67 |
-
image = pipe(
|
68 |
-
prompt=prompt,
|
69 |
-
negative_prompt = negative_prompt,
|
70 |
-
image=detectors,
|
71 |
-
num_inference_steps=50,
|
72 |
-
controlnet_conditioning_scale=[1.0, 0.2],
|
73 |
-
ip_adapter_image=reference_img,
|
74 |
-
).images[0]
|
75 |
-
|
76 |
-
return image
|
|
|
2 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
|
3 |
import torch
|
4 |
import pickle as pkl
|
5 |
+
|
6 |
|
7 |
device = "cuda"
|
8 |
|
9 |
+
def get_cn_pipeline():
|
10 |
controlnets = [
|
11 |
ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True),
|
12 |
ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16)
|
|
|
16 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
17 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
|
18 |
)
|
19 |
+
pipe.load_ip_adapter(
|
20 |
+
"ozzygt/sdxl-ip-adapter",
|
21 |
+
"",
|
22 |
+
weight_name="ip-adapter_sdxl_vit-h.safetensors"
|
23 |
+
)
|
24 |
|
25 |
return pipe
|
26 |
|
|
|
35 |
|
36 |
|
37 |
def get_cn_detector(image):
|
38 |
+
re_image = invert_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
detectors = [re_image, image]
|
|
|
40 |
return detectors
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|