Spaces:
Runtime error
Runtime error
import gradio as gr | |
import sys | |
from starline import process | |
from utils import load_cn_model, load_cn_config, randomname | |
from convertor import pil2cv, cv2pil | |
from sd_model import get_cn_pipeline, generate, get_cn_detector | |
import cv2 | |
import os | |
import numpy as np | |
from PIL import Image | |
import zipfile | |
path = os.getcwd() | |
output_dir = f"{path}/output" | |
input_dir = f"{path}/input" | |
cn_lineart_dir = f"{path}/controlnet/lineart" | |
load_cn_model(cn_lineart_dir) | |
load_cn_config(cn_lineart_dir) | |
def zip_png_files(folder_path): | |
# Zipファイルの名前を設定(フォルダ名と同じにします) | |
zip_path = os.path.join(folder_path, 'output.zip') | |
# zipfileオブジェクトを作成し、書き込みモードで開く | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
# フォルダ内のすべてのファイルをループ処理 | |
for foldername, subfolders, filenames in os.walk(folder_path): | |
for filename in filenames: | |
# PNGファイルのみを対象にする | |
if filename.endswith('.png'): | |
# ファイルのフルパスを取得 | |
file_path = os.path.join(foldername, filename) | |
# zipファイルに追加 | |
zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path)) | |
def resize_image(img, max_size=1024): | |
# 画像を開く | |
width, height = img.size | |
print(f"元の画像サイズ: 幅 {width} x 高さ {height}") | |
# 縦または横がmax_sizeを超えているかチェック | |
if width > max_size or height > max_size: | |
# 縦横比を保ちながらリサイズ | |
if width > height: | |
new_width = max_size | |
new_height = int(max_size * height / width) | |
else: | |
new_height = max_size | |
new_width = int(max_size * width / height) | |
# リサイズ実行 | |
resized_img = img.resize((new_width, new_height), Image.ANTIALIAS) | |
print(f"リサイズ後の画像サイズ: 幅 {new_width} x 高さ {new_height}") | |
return resized_img | |
else: | |
return img | |
class webui: | |
def __init__(self): | |
self.demo = gr.Blocks() | |
def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_img): | |
input_image = resize_image(input_image) | |
org_line_image = input_image | |
image = pil2cv(input_image) | |
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) | |
index = np.where(image[:, :, 3] == 0) | |
image[index] = [255, 255, 255, 255] | |
input_image = cv2pil(image) | |
pipe = get_cn_pipeline(reference_flg) | |
detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS)) | |
gen_image = generate(pipe, detectors, pos_prompt, neg_prompt, reference_flg, reference_img) | |
color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness) | |
#color_img = color_img.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS) | |
output_img = Image.alpha_composite(color_img, org_line_image) | |
name = randomname(10) | |
if not os.path.exists(f"{output_dir}"): | |
os.makedirs(f"{output_dir}") | |
os.makedirs(f"{output_dir}/{name}") | |
output_img.save(f"{output_dir}/{name}/output_image.png") | |
org_line_image.save(f"{output_dir}/{name}/line_image.png") | |
color_img.save(f"{output_dir}/{name}/color_image.png") | |
unfinished.save(f"{output_dir}/{name}/unfinished_image.png") | |
outputs = [output_img, org_line_image, color_img, unfinished] | |
zip_png_files(f"{output_dir}/{name}") | |
filename = f"{output_dir}/{name}/output.zip" | |
return outputs, filename | |
def launch(self, share): | |
with self.demo: | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", image_mode="RGBA", label="lineart") | |
pos_prompt = gr.Textbox(value="1girl, blue hair, pink shirts, bestquality, 4K", max_lines=1000, label="positive prompt") | |
neg_prompt = gr.Textbox(value=" (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)", max_lines=1000, label="negative prompt") | |
alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold") | |
thickness = gr.Number(value=5, label="Thickness of correction area (Odd numbers need to be entered)") | |
reference_image = gr.Image(type="pil", image_mode="RGB", label="reference_image") | |
reference_flg = gr.Checkbox(value=True, label="reference_flg") | |
#gr.Slider(maximum = 21, value=3, step=2, label = "Thickness of correction area") | |
submit = gr.Button(value="Start") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("output"): | |
output_0 = gr.Gallery(format="png") | |
output_file = gr.File() | |
submit.click( | |
self.undercoat, | |
inputs=[input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_image], | |
outputs=[output_0, output_file] | |
) | |
self.demo.queue() | |
self.demo.launch(share=share) | |
if __name__ == "__main__": | |
ui = webui() | |
if len(sys.argv) > 1: | |
if sys.argv[1] == "share": | |
ui.launch(share=True) | |
else: | |
ui.launch(share=False) | |
else: | |
ui.launch(share=False) | |