starline / starline.py
mattyamonaca's picture
Add application file
e3dd038
raw
history blame
15 kB
from collections import defaultdict, deque
import cv2
import numpy as np
from PIL import Image
from skimage.color import deltaE_ciede2000, rgb2lab
from tqdm import tqdm
def modify_transparency(img, target_rgb):
# 画像を読み込む
copy_img = img.copy()
data = copy_img.getdata()
# 新しいピクセルデータを作成
new_data = []
for item in data:
# 指定されたRGB値のピクセルの場合、透明度を255に設定
if item[:3] == target_rgb:
new_data.append((item[0], item[1], item[2], 255))
else:
# それ以外の場合、透明度を0に設定
new_data.append((item[0], item[1], item[2], 0))
# 新しいデータを画像に設定し直す
copy_img.putdata(new_data)
return copy_img
def replace_color(image, color_1, color_2, alpha_np):
# 画像データを配列に変換
data = np.array(image)
# RGBAモードの画像であるため、形状変更時に4チャネルを考慮
original_shape = data.shape
color_1 = np.array(color_1, dtype=np.uint8)
color_2 = np.array(color_2, dtype=np.uint8)
# 幅優先探索で color_1 の領域を外側から塗りつぶす
# color_2 で保護されたオリジナルの線画
protected = np.all(data[:, :, :3] == color_2, axis=2)
# color_1 で塗られた塗りつぶしたい領域
fill_target = np.all(data[:, :, :3] == color_1, axis=2)
# すでに塗られている領域
colored = (protected | fill_target) == False
# bfs の始点を列挙
# colored をそのまま使ってもいいが、pythonは遅いのでnumpy経由のこの方が速い
# 上下左右にシフトした fill_target & colored == True になるやつ
adj_r = colored & np.roll(fill_target, -1, axis=0)
adj_r[:, -1] = False
adj_l = colored & np.roll(fill_target, 1, axis=0)
adj_l[:, 0] = False
adj_u = colored & np.roll(fill_target, 1, axis=1)
adj_u[:, 0] = False
adj_d = colored & np.roll(fill_target, -1, axis=1)
adj_d[:, -1] = False
# そのピクセルはすでに塗られていて、上下左右いずれかのピクセルが color_1 であるもの
bfs_start = adj_r | adj_l | adj_u | adj_d
que = deque(
zip(*np.where(bfs_start)),
maxlen=original_shape[0] * original_shape[1] * 2,
)
with tqdm(total=original_shape[0] * original_shape[1]) as pbar:
pbar.update(np.sum(colored) - np.sum(bfs_start) + np.sum(protected))
while len(que) > 0:
y, x = que.popleft()
neighbors = [
(x - 1, y),
(x + 1, y),
(x, y - 1),
(x, y + 1), # 上下左右
]
pbar.update(1)
# assert not fill_target[y, x] and not protected[y, x]
# assert colored[y, x]
color = data[y, x, :3]
for nx, ny in neighbors:
if (
nx < 0
or nx >= original_shape[1]
or ny < 0
or ny >= original_shape[0]
):
continue
if fill_target[ny, nx]:
fill_target[ny, nx] = False
# colored[ny, nx] = True
data[ny, nx, :3] = color
que.append((ny, nx))
pbar.update(pbar.total - pbar.n)
data[:, :, 3] = 255 - alpha_np
return Image.fromarray(data, "RGBA")
def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
"""
Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
Args:
lineart_image (PIL.Image): The lineart image with RGBA channels.
base_image (PIL.Image): The base image to composite onto.
new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
Returns:
PIL.Image: The composited image with the recolored lineart on top.
"""
# Ensure images are in RGBA mode
if lineart_image.mode != "RGBA":
lineart_image = lineart_image.convert("RGBA")
if base_image.mode != "RGBA":
base_image = base_image.convert("RGBA")
# Extract the alpha channel from the lineart image
r, g, b, alpha = lineart_image.split()
alpha_np = np.array(alpha)
alpha_np[alpha_np < alpha_th] = 0
alpha_np[alpha_np >= alpha_th] = 255
new_alpha = Image.fromarray(alpha_np)
# Create a new image using the new color and the alpha channel from the original lineart
new_lineart_image = Image.merge(
"RGBA",
(
Image.new("L", lineart_image.size, int(new_color[0])),
Image.new("L", lineart_image.size, int(new_color[1])),
Image.new("L", lineart_image.size, int(new_color[2])),
new_alpha,
),
)
# Composite the new lineart image over the base image
composite_image = Image.alpha_composite(base_image, new_lineart_image)
return composite_image, alpha_np
def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
"""
Thicken the lines of a lineart image, recolor them, and composite onto another image,
while preserving the transparency of the original lineart.
Args:
base_image (PIL.Image): The base image to composite onto.
lineart (PIL.Image): The lineart image with transparent background.
thickness (int): The desired thickness of the lines.
new_color (tuple): The new color to apply to the lines (R, G, B).
Returns:
PIL.Image: The image with the recolored and thickened lineart composited on top.
"""
# Ensure both images are in RGBA format
if base_image.mode != "RGBA":
base_image = base_image.convert("RGBA")
if lineart.mode != "RGB":
lineart = lineart.convert("RGBA")
# Convert the lineart image to OpenCV format
lineart_cv = np.array(lineart)
white_pixels = np.sum(lineart_cv == 255)
black_pixels = np.sum(lineart_cv == 0)
lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
if white_pixels > black_pixels:
lineart_gray = cv2.bitwise_not(lineart_gray)
# Thicken the lines using OpenCV
kernel = np.ones((thickness, thickness), np.uint8)
lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
lineart_thickened = cv2.bitwise_not(lineart_thickened)
# Create a new RGBA image for the recolored lineart
lineart_recolored = np.zeros_like(lineart_cv)
lineart_recolored[:, :, :3] = new_color # Set new RGB color
lineart_recolored[:, :, 3] = np.where(
lineart_thickened < 250, 255, 0
) # Blend alpha with thickened lines
# Convert back to PIL Image
lineart_recolored_pil = Image.fromarray(lineart_recolored, "RGBA")
# Composite the thickened and recolored lineart onto the base image
combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
return combined_image
def generate_distant_colors(consolidated_colors, distance_threshold):
"""
Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
Args:
consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
Returns:
list of tuples: List of new RGB colors that meet the distance requirement.
"""
# new_colors = []
# Convert the consolidated colors to LAB
consolidated_lab = [
rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3)
for color, _ in consolidated_colors
]
# Try to find a distant color
max_attempts = 1000
best_dist = 0.0
best_color = (0, 0, 0)
# np.random.seed(42)
for _ in range(max_attempts):
# Generate a random color in RGB and convert to LAB
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(
3
)
# consolidated_lab にある色からできるだけ遠い色を選びたい
min_distance = min(
map(
lambda base_color_lab: deltaE_ciede2000(base_color_lab, random_lab),
consolidated_lab,
)
)
if min_distance > distance_threshold:
return tuple(random_rgb)
# 閾値以上のものが見つからなかった場合に備えて一番良かったものを覚えておく
if best_dist < min_distance:
best_dist = min_distance
best_color = tuple(random_rgb)
return best_color
def consolidate_colors(major_colors, threshold):
"""
Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
Args:
major_colors (list of tuples): List of ((R, G, B), count) tuples.
threshold (float): Threshold for CIEDE2000 color difference.
Returns:
list of tuples: Consolidated list of ((R, G, B), count) tuples.
"""
# Convert RGB to LAB
colors_lab = [
rgb2lab(np.array([[color]], dtype=np.float32) / 255.0).reshape(3)
for color, _ in major_colors
]
n = len(colors_lab)
# Find similar colors and consolidate
i = 0
while i < n:
j = i + 1
while j < n:
delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
if delta_e < threshold:
# Compare counts and consolidate to the color with the higher count
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (
major_colors[i][0],
major_colors[i][1] + major_colors[j][1],
)
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (
major_colors[j][0],
major_colors[j][1] + major_colors[i][1],
)
major_colors.pop(i)
colors_lab.pop(i)
n -= 1
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
"""
Analyze an image to find the major RGB values based on a threshold percentage.
Args:
image (PIL.Image): The image to analyze.
threshold_percentage (float): The percentage threshold to consider a color as major.
Returns:
list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
"""
# Convert image to RGB if it's not
if image.mode != "RGB":
image = image.convert("RGB")
# Count each color
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
# Total number of pixels
total_pixels = image.width * image.height
# Filter colors to find those above the threshold
major_colors = [
(color, count)
for color, count in color_count.items()
if (count / total_pixels) >= threshold_percentage
]
return major_colors
def process(image, lineart, alpha_th, thickness):
org = image
image.save("tmp.png")
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
th = 10
threshold_percentage = 0.05
while len(major_colors) < 1:
threshold_percentage = threshold_percentage - 0.001
major_colors = get_major_colors(image, threshold_percentage=threshold_percentage)
while len(major_colors) < 1:
th = th + 1
major_colors = consolidate_colors(major_colors, th)
new_color_1 = generate_distant_colors(major_colors, 50)
image = thicken_and_recolor_lines(
org, lineart, thickness=thickness, new_color=new_color_1
)
major_colors.append((new_color_1, 0))
new_color_2 = generate_distant_colors(major_colors, 40)
image, alpha_np = recolor_lineart_and_composite(
lineart, image, new_color_2, alpha_th
)
# import time
# start = time.time()
image = replace_color(image, new_color_1, new_color_2, alpha_np)
# end = time.time()
# print(f"{end-start} sec")
unfinished = modify_transparency(image, new_color_1)
return image, unfinished
def main():
import os
import sys
from argparse import ArgumentParser
from PIL import Image
from utils import randomname
args = ArgumentParser(
prog="starline",
description="Starline",
epilog="Starline",
)
args.add_argument("-c", "--colored_image", help="colored image", required=True)
args.add_argument("-l", "--lineart_image", help="lineart image", required=True)
args.add_argument("-o", "--output_dir", help="output directory", default="output")
args.add_argument("-a", "--alpha_th", help="alpha threshold", default=100, type=int)
args.add_argument("-t", "--thickness", help="line thickness", default=5, type=int)
args = args.parse_args(sys.argv[1:])
colored_image_path = args.colored_image
lineart_image_path = args.lineart_image
alpha = args.alpha_th
thickness = args.thickness
output_dir = args.output_dir
colored_image = Image.open(colored_image_path)
lineart_image = Image.open(lineart_image_path)
if lineart_image.mode == "P" or lineart_image.mode == "L":
# 線画が 1-channel 画像のときの処理
# alpha-channel の情報が入力されたと仮定して (透明 -> 0, 不透明 -> 255)
# RGB channel はこれを反転させたものにする (透明 -> 白 -> 255, 不透明 -> 黒 -> 0)
lineart_image = lineart_image.convert("RGBA")
lineart_image = np.array(lineart_image)
lineart_image[:, :, 0] = 255 - lineart_image[:, :, 3]
lineart_image[:, :, 1] = 255 - lineart_image[:, :, 3]
lineart_image[:, :, 2] = 255 - lineart_image[:, :, 3]
lineart_image = Image.fromarray(lineart_image)
lineart_image = lineart_image.convert("RGBA")
result_image, unfinished = process(colored_image, lineart_image, alpha, thickness)
output_image = Image.alpha_composite(result_image, lineart_image)
name = randomname(10)
os.makedirs(f"{output_dir}/{name}")
output_image.save(f"{output_dir}/{name}/output_image.png")
result_image.save(f"{output_dir}/{name}/color_image.png")
unfinished.save(f"{output_dir}/{name}/unfinished_image.png")
if __name__ == "__main__":
main()