mattyamonaca Fabrice-TIERCELIN commited on
Commit
ddfadf6
·
verified ·
1 Parent(s): cacfcbe

This PR simplifies the display, uses uppercase and highlights the prompts (#1)

Browse files

- This PR simplifies the display, uses uppercase and highlights the prompts (2f25a45d3a4585e4469198c6dd9b8189a47e88c3)


Co-authored-by: Fabrice TIERCELIN <Fabrice-TIERCELIN@users.noreply.huggingface.co>

Files changed (1) hide show
  1. app.py +77 -80
app.py CHANGED
@@ -1,80 +1,77 @@
1
- import gradio as gr
2
- import sys
3
- from utils import load_lora_model
4
- from bg_alpha import adjust_transparency
5
- from lineart import get_pipe
6
- import os
7
- from PIL import Image
8
- import spaces
9
-
10
- path = os.getcwd()
11
- output_dir = f"{path}/output"
12
- lora_dir = f"{path}/models/lora"
13
-
14
- load_lora_model(lora_dir)
15
-
16
- pipe = get_pipe(lora_dir)
17
-
18
- @spaces.GPU()
19
- def generate(prompt, negative_prompt):
20
- default_pos = "((white background)), lineart, <lora:sdxl_BWLine:1.0>, monochrome, "
21
- default_neg = ""
22
- prompt = default_pos + prompt
23
- negative_prompt = default_neg + negative_prompt
24
-
25
- width, height = 1024, 1024
26
- color = (255, 255, 255)
27
- white_bg = Image.new("RGB", (width, height), color)
28
-
29
- image = pipe(
30
- prompt=prompt,
31
- negative_prompt = negative_prompt,
32
- image=[white_bg],
33
- num_inference_steps=50,
34
- controlnet_conditioning_scale=[0.1]
35
- ).images[0]
36
-
37
- return image
38
-
39
-
40
- class webui:
41
- def __init__(self):
42
- self.demo = gr.Blocks()
43
-
44
- def process(self, pos_prompt, neg_prompt):
45
- image = generate(pos_prompt, neg_prompt)
46
- image = adjust_transparency(image)
47
- return [image]
48
-
49
- def launch(self, share):
50
- with self.demo:
51
- with gr.Column():
52
- with gr.Tab("output"):
53
- output_0 = gr.Gallery(format="png")
54
- #output_file = gr.File()
55
- with gr.Column():
56
- pos_prompt = gr.Textbox(value="1girl, cute, kawaii, medium breasts, medium hair, smile, mini skirt, best quality, very aesthetic," ,max_lines=1000, label="positive prompt")
57
- neg_prompt = gr.Textbox(value="bold line, multiple people," ,max_lines=1000, label="negative prompt")
58
-
59
- submit = gr.Button(value="Start")
60
-
61
-
62
- submit.click(
63
- self.process,
64
- inputs=[pos_prompt, neg_prompt], #[input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_image],
65
- outputs=[output_0]
66
- )
67
-
68
- self.demo.queue()
69
- self.demo.launch(share=share)
70
-
71
-
72
- if __name__ == "__main__":
73
- ui = webui()
74
- if len(sys.argv) > 1:
75
- if sys.argv[1] == "share":
76
- ui.launch(share=True)
77
- else:
78
- ui.launch(share=False)
79
- else:
80
- ui.launch(share=False)
 
1
+ import gradio as gr
2
+ import sys
3
+ from utils import load_lora_model
4
+ from bg_alpha import adjust_transparency
5
+ from lineart import get_pipe
6
+ import os
7
+ from PIL import Image
8
+ import spaces
9
+
10
+ path = os.getcwd()
11
+ output_dir = f"{path}/output"
12
+ lora_dir = f"{path}/models/lora"
13
+
14
+ load_lora_model(lora_dir)
15
+
16
+ pipe = get_pipe(lora_dir)
17
+
18
+ @spaces.GPU()
19
+ def generate(prompt, negative_prompt):
20
+ default_pos = "((white background)), lineart, <lora:sdxl_BWLine:1.0>, monochrome, "
21
+ default_neg = ""
22
+ prompt = default_pos + prompt
23
+ negative_prompt = default_neg + negative_prompt
24
+
25
+ width, height = 1024, 1024
26
+ color = (255, 255, 255)
27
+ white_bg = Image.new("RGB", (width, height), color)
28
+
29
+ image = pipe(
30
+ prompt=prompt,
31
+ negative_prompt = negative_prompt,
32
+ image=[white_bg],
33
+ num_inference_steps=50,
34
+ controlnet_conditioning_scale=[0.1]
35
+ ).images[0]
36
+
37
+ return image
38
+
39
+
40
+ class webui:
41
+ def __init__(self):
42
+ self.demo = gr.Blocks()
43
+
44
+ def process(self, pos_prompt, neg_prompt):
45
+ image = generate(pos_prompt, neg_prompt)
46
+ image = adjust_transparency(image)
47
+ return [image]
48
+
49
+ def launch(self, share):
50
+ with self.demo:
51
+ with gr.Column():
52
+ pos_prompt = gr.Textbox(value="1girl, cute, kawaii, medium breasts, medium hair, smile, mini skirt, best quality, very aesthetic,", max_lines=1000, label="Positive prompt")
53
+ neg_prompt = gr.Textbox(value="bold line, multiple people,", max_lines=1000, label="Negative prompt")
54
+
55
+ submit = gr.Button(value="Start", variant="primary")
56
+
57
+ output_0 = gr.Image(label="Output", format="png")
58
+
59
+ submit.click(
60
+ self.process,
61
+ inputs=[pos_prompt, neg_prompt], #[input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_image],
62
+ outputs=[output_0]
63
+ )
64
+
65
+ self.demo.queue()
66
+ self.demo.launch(share=share)
67
+
68
+
69
+ if __name__ == "__main__":
70
+ ui = webui()
71
+ if len(sys.argv) > 1:
72
+ if sys.argv[1] == "share":
73
+ ui.launch(share=True)
74
+ else:
75
+ ui.launch(share=False)
76
+ else:
77
+ ui.launch(share=False)