Spaces:
Sleeping
Sleeping
mattritchey
commited on
Upload 3 files
Browse files- Dockerfile +21 -0
- main.py +126 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
COPY ./requirements.txt /code/requirements.txt
|
7 |
+
|
8 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
9 |
+
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
|
12 |
+
USER user
|
13 |
+
|
14 |
+
ENV HOME=/home/user \
|
15 |
+
PATH=/home/user/.local/bin:$PATH
|
16 |
+
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
|
19 |
+
COPY --chown=user . $HOME/app
|
20 |
+
|
21 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import uvicorn
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
import rasterio
|
8 |
+
import h5py
|
9 |
+
from skimage.morphology import disk
|
10 |
+
from geopy.extra.rate_limiter import RateLimiter
|
11 |
+
from geopy.geocoders import Nominatim
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
|
16 |
+
#Endpoints
|
17 |
+
#Root endpoints
|
18 |
+
@app.get("/")
|
19 |
+
def root():
|
20 |
+
return {"API": "Hail API 2020"}
|
21 |
+
|
22 |
+
def geocode_address(address):
|
23 |
+
|
24 |
+
try:
|
25 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
26 |
+
df = pd.read_json(
|
27 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
28 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
29 |
+
lat, lon = results['y'], results['x']
|
30 |
+
except:
|
31 |
+
geolocator = Nominatim(user_agent='GTA Lookup')
|
32 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
|
33 |
+
location = geolocator.geocode(address)
|
34 |
+
lat, lon = location.latitude, location.longitude
|
35 |
+
|
36 |
+
return lat, lon
|
37 |
+
|
38 |
+
def get_hail_data(address, start_date, end_date, radius_miles, get_max):
|
39 |
+
|
40 |
+
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
|
41 |
+
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
|
42 |
+
date_years = pd.date_range(start=start_date, end=end_date, freq='M')
|
43 |
+
date_range_days = pd.date_range(start_date, end_date)
|
44 |
+
years = list(set([d.year for d in date_years]))
|
45 |
+
|
46 |
+
if len(years) == 0:
|
47 |
+
years = [pd.Timestamp(start_date).year]
|
48 |
+
|
49 |
+
# Geocode Address
|
50 |
+
lat, lon= geocode_address(address)
|
51 |
+
|
52 |
+
# Convert Lat Lon to row & col on Array
|
53 |
+
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
|
54 |
+
|
55 |
+
row, col = rasterio.transform.rowcol(transform, lon, lat)
|
56 |
+
|
57 |
+
files = [
|
58 |
+
'Data/2023_hail.h5',
|
59 |
+
'Data/2022_hail.h5',
|
60 |
+
'Data/2021_hail.h5',
|
61 |
+
'Data/2020_hail.h5'
|
62 |
+
]
|
63 |
+
|
64 |
+
files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
|
65 |
+
|
66 |
+
# Query and Collect H5 Data
|
67 |
+
all_data = []
|
68 |
+
all_dates = []
|
69 |
+
for file in files_choosen:
|
70 |
+
with h5py.File(file, 'r') as f:
|
71 |
+
# Get Dates from H5
|
72 |
+
dates = f['dates'][:]
|
73 |
+
date_idx = np.where((dates >= int(start_date))
|
74 |
+
& (dates <= int(end_date)))[0]
|
75 |
+
|
76 |
+
# Select Data by Date and Radius
|
77 |
+
dates = dates[date_idx]
|
78 |
+
data = f['hail'][date_idx, row-radius_miles:row +
|
79 |
+
radius_miles+1, col-radius_miles:col+radius_miles+1]
|
80 |
+
|
81 |
+
all_data.append(data)
|
82 |
+
all_dates.append(dates)
|
83 |
+
|
84 |
+
data_all = np.vstack(all_data)
|
85 |
+
dates_all = np.concatenate(all_dates)
|
86 |
+
|
87 |
+
# Convert to Inches
|
88 |
+
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
|
89 |
+
|
90 |
+
# Get Radius of Data
|
91 |
+
disk_mask = np.where(disk(radius_miles) == 1, True, False)
|
92 |
+
data_mat = np.where(disk_mask, data_mat, -1).round(3)
|
93 |
+
|
94 |
+
# Process to DataFrame
|
95 |
+
# Find Max of Data
|
96 |
+
if get_max == True:
|
97 |
+
data_max = np.max(data_mat, axis=(1, 2))
|
98 |
+
df_data = pd.DataFrame({'Date': dates_all,
|
99 |
+
'Hail_max': data_max})
|
100 |
+
# Get all Data
|
101 |
+
else:
|
102 |
+
data_all = list(data_mat)
|
103 |
+
df_data = pd.DataFrame({'Date': dates_all,
|
104 |
+
'Hail_all': data_all})
|
105 |
+
|
106 |
+
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
|
107 |
+
df_data = df_data.set_index('Date')
|
108 |
+
|
109 |
+
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
|
110 |
+
columns={'index': 'Date'})
|
111 |
+
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
|
112 |
+
|
113 |
+
return df_data
|
114 |
+
|
115 |
+
|
116 |
+
@app.get('/Hail_Docker_Data')
|
117 |
+
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
|
118 |
+
|
119 |
+
try:
|
120 |
+
results = get_hail_data(address, start_date,
|
121 |
+
end_date, radius_miles, get_max)
|
122 |
+
except:
|
123 |
+
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
|
124 |
+
|
125 |
+
return results.to_json()
|
126 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi[all]
|
2 |
+
uvicorn[standard]
|
3 |
+
beautifulsoup4
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
rasterio
|
7 |
+
h5py
|
8 |
+
scikit-image
|
9 |
+
geopy
|