mattritchey commited on
Commit
e3aa2de
1 Parent(s): 8fbedd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -40
app.py CHANGED
@@ -40,38 +40,38 @@ def geocode(address):
40
  return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])
41
 
42
 
43
- # def get_data(row, col, radius=8):
44
- # files = [
45
- # "data/2023_hail.h5",
46
- # "data/2022_hail.h5",
47
- # "data/2021_hail.h5",
48
- # "data/2020_hail.h5"
49
- # ]
50
- # all_data = []
51
- # all_dates = []
52
- # for f in files:
53
- # with h5py.File(f, 'r') as f:
54
- # data = f['hail'][:, row - radius: row + radius+ 1, col-radius: col+radius+1]
55
- # dates = f['dates'][:]
56
- # all_data.append(data)
57
- # all_dates.append(dates)
58
-
59
- # data_mat = np.concatenate(all_data)
60
- # data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
61
- # dates_mat = np.concatenate(all_dates)
62
-
63
- # data_actual = [i[radius, radius] for i in data_mat]
64
- # data_max = np.max(data_mat, axis=(1, 2))
65
- # data_max_2 = np.max(data_mat, axis=0)
66
-
67
- # df = pd.DataFrame({'Date': dates_mat,
68
- # 'Actual': data_actual,
69
- # 'Max': data_max})
70
-
71
- # df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
72
- # df['Date']=df['Date']+pd.Timedelta(days=1)
73
-
74
- # return df, data_max_2
75
 
76
 
77
  def map_folium(lat, lon,files_dates_selected, within_days ):
@@ -206,6 +206,7 @@ crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb'))
206
  transform = crs_dic['affine']
207
 
208
  row, col = rasterio.transform.rowcol(transform, lon, lat)
 
209
  st.write(row,col)
210
 
211
  # center=row,col
@@ -221,12 +222,11 @@ files = [
221
  all_data = []
222
  all_dates = []
223
  for i in files:
224
- with h5py.File(i, 'r') as f:
225
- data = f['hail'][:, 100 - radius:100 + radius+ 1,
226
- 100-radius: 100+radius+1]
227
- dates = f['dates'][:]
228
- all_data.append(data)
229
- all_dates.append(dates)
230
 
231
 
232
 
@@ -237,8 +237,8 @@ files_dates_selected = [i for i in files if any(
237
 
238
 
239
 
240
- # # Get Data
241
- # df_data, max_values = get_data(row, col, radius)
242
 
243
  # df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'")
244
  # df_data['Max'] = df_data['Max'].round(3)
 
40
  return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])
41
 
42
 
43
+ def get_data(row, col, radius=8):
44
+ files = [
45
+ "data/2023_hail.h5",
46
+ "data/2022_hail.h5",
47
+ "data/2021_hail.h5",
48
+ "data/2020_hail.h5"
49
+ ]
50
+ all_data = []
51
+ all_dates = []
52
+ for f in files:
53
+ with h5py.File(f, 'r') as f:
54
+ data = f['hail'][:, row - radius: row + radius+ 1, col-radius: col+radius+1]
55
+ dates = f['dates'][:]
56
+ all_data.append(data)
57
+ all_dates.append(dates)
58
+
59
+ data_mat = np.concatenate(all_data)
60
+ data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
61
+ dates_mat = np.concatenate(all_dates)
62
+
63
+ data_actual = [i[radius, radius] for i in data_mat]
64
+ data_max = np.max(data_mat, axis=(1, 2))
65
+ data_max_2 = np.max(data_mat, axis=0)
66
+
67
+ df = pd.DataFrame({'Date': dates_mat,
68
+ 'Actual': data_actual,
69
+ 'Max': data_max})
70
+
71
+ df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
72
+ df['Date']=df['Date']+pd.Timedelta(days=1)
73
+
74
+ return df, data_max_2
75
 
76
 
77
  def map_folium(lat, lon,files_dates_selected, within_days ):
 
206
  transform = crs_dic['affine']
207
 
208
  row, col = rasterio.transform.rowcol(transform, lon, lat)
209
+ row, col =int(row), int(col)
210
  st.write(row,col)
211
 
212
  # center=row,col
 
222
  all_data = []
223
  all_dates = []
224
  for i in files:
225
+ with h5py.File(f, 'r') as f:
226
+ data = f['hail'][:, row - radius: row + radius+ 1, col-radius: col+radius+1]
227
+ dates = f['dates'][:]
228
+ all_data.append(data)
229
+ all_dates.append(dates)
 
230
 
231
 
232
 
 
237
 
238
 
239
 
240
+ # Get Data
241
+ df_data, max_values = get_data(row, col, radius)
242
 
243
  # df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'")
244
  # df_data['Max'] = df_data['Max'].round(3)