Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import uvicorn | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import rasterio | |
import h5py | |
from skimage.morphology import disk | |
app = FastAPI() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "Hail Docker Data"} | |
def get_hail_data(lat, lon, start_date, end_date, radius_miles, get_max): | |
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d') | |
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d') | |
date_years = pd.date_range(start=start_date, end=end_date, freq='M') | |
date_range_days = pd.date_range(start_date, end_date) | |
years = list(set([d.year for d in date_years])) | |
if len(years) == 0: | |
years = [pd.Timestamp(start_date).year] | |
# Convert Lat Lon to row & col on Array | |
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb')) | |
row, col = rasterio.transform.rowcol(transform, lon, lat) | |
files = [ | |
'Data/2023_hail.h5', | |
'Data/2022_hail.h5', | |
'Data/2021_hail.h5', | |
'Data/2020_hail.h5' | |
] | |
files_choosen = [i for i in files if any(i for j in years if str(j) in i)] | |
# Query and Collect H5 Data | |
all_data = [] | |
all_dates = [] | |
for file in files_choosen: | |
with h5py.File(file, 'r') as f: | |
# Get Dates from H5 | |
dates = f['dates'][:] | |
date_idx = np.where((dates >= int(start_date)) | |
& (dates <= int(end_date)))[0] | |
# Select Data by Date and Radius | |
dates = dates[date_idx] | |
data = f['hail'][date_idx, row-radius_miles:row + | |
radius_miles+1, col-radius_miles:col+radius_miles+1] | |
all_data.append(data) | |
all_dates.append(dates) | |
data_all = np.vstack(all_data) | |
dates_all = np.concatenate(all_dates) | |
# Convert to Inches | |
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 | |
# Get Radius of Data | |
disk_mask = np.where(disk(radius_miles) == 1, True, False) | |
data_mat = np.where(disk_mask, data_mat, -1).round(3) | |
# Process to DataFrame | |
# Find Max of Data | |
if get_max == True: | |
data_max = np.max(data_mat, axis=(1, 2)) | |
df_data = pd.DataFrame({'Date': dates_all, | |
'Hail_max': data_max}) | |
# Get all Data | |
else: | |
data_all = list(data_mat) | |
df_data = pd.DataFrame({'Date': dates_all, | |
'Hail_all': data_all}) | |
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d') | |
df_data = df_data.set_index('Date') | |
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename( | |
columns={'index': 'Date'}) | |
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d') | |
return df_data | |
async def predict(lat: float, lon: float, start_date: str, end_date: str, radius_miles: int, get_max: bool): | |
try: | |
results = get_hail_data(lat, lon, start_date, | |
end_date, radius_miles, get_max) | |
except: | |
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']}) | |
return results.to_json() | |