Spaces:
Sleeping
Sleeping
from branca.element import Template, MacroElement | |
from folium.raster_layers import ImageOverlay | |
import re | |
import glob | |
import altair as alt | |
import pickle | |
import h5py | |
import rasterio | |
import streamlit as st | |
import os | |
import branca.colormap as cm | |
import folium | |
import numpy as np | |
import pandas as pd | |
from geopy.extra.rate_limiter import RateLimiter | |
from geopy.geocoders import Nominatim | |
import warnings | |
warnings.filterwarnings("ignore") | |
def convert_df(df): | |
return df.to_csv(index=0).encode('utf-8') | |
def geocode(address): | |
try: | |
address2 = address.replace(' ', '+').replace(',', '%2C') | |
df = pd.read_json( | |
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') | |
results = df.iloc[:1, 0][0][0]['coordinates'] | |
lat, lon = results['y'], results['x'] | |
except: | |
geolocator = Nominatim(user_agent="GTA Lookup") | |
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) | |
location = geolocator.geocode(address) | |
lat, lon = location.latitude, location.longitude | |
return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0]) | |
def get_data(row, col, radius=8): | |
files = [ | |
"data/2023_hail.h5", | |
"data/2022_hail.h5", | |
"data/2021_hail.h5", | |
"data/2020_hail.h5" | |
] | |
all_data = [] | |
all_dates = [] | |
for f in files: | |
with h5py.File(f, 'r') as f: | |
data = f['hail'][:, row-radius:row + | |
radius+1, col-radius:col+radius+1] | |
dates = f['dates'][:] | |
all_data.append(data) | |
all_dates.append(dates) | |
data_mat = np.concatenate(all_data) | |
data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701 | |
dates_mat = np.concatenate(all_dates) | |
data_actual = [i[radius, radius] for i in data_mat] | |
data_max = np.max(data_mat, axis=(1, 2)) | |
data_max_2 = np.max(data_mat, axis=0) | |
df = pd.DataFrame({'Date': dates_mat, | |
'Actual': data_actual, | |
'Max': data_max}) | |
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d') | |
df['Date']=df['Date']+pd.Timedelta(days=1) | |
return df, data_max_2 | |
def map_folium(lat, lon,files_dates_selected, within_days ): | |
# Create a base map | |
m = folium.Map(location=[lat, lon], zoom_start=5) | |
folium.Marker(location=[lat, lon], popup=address).add_to(m) | |
# Define the image bounds (SW and NE corners) | |
image_bounds = [[20.0000010001429, -129.99999999985712], [54.9999999998571, -60.00000200014287]] | |
# Add ImageOverlays for each image | |
dates = [] | |
for f in files_dates_selected: | |
overlay = ImageOverlay(image=f, bounds=image_bounds, | |
opacity=.75, | |
mercator_project=False) | |
filename = os.path.basename(f) | |
date_str = re.search(r'(\d{8})', filename).group() | |
formatted_date = f"{date_str[:4]}-{date_str[4:6]}-{date_str[6:8]}" | |
dates.append(formatted_date) | |
overlay.add_to(m) | |
# HTML template for the slider control with dates | |
template_1 = '{% macro html(this, kwargs) %}' + f""" | |
<div id="slider-control" style="position: fixed; top: 50px; left: 50px; z-index: 9999; background-color: white; padding: 10px; border-radius: 5px; box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);"> | |
<label for="image-slider">Select Date:</label> | |
<input type="range" min="0" max="{len(dates)-1}" value="{within_days}" class="slider" id="image-slider" style="width: 150px;" oninput="updateFromSlider(this.value)"> | |
<input type="text" id="date-input" placeholder="YYYY-MM-DD" oninput="updateFromInput(this.value)"> | |
<span id="slider-value">{dates[within_days]}</span> | |
</div> | |
<script>""" | |
template_2 = f""" | |
var dates = {dates};""" | |
template_3 = """ | |
var currentIndex = 0; | |
function updateImage(index) { | |
index = Math.round(index); // Ensure the index is an integer | |
// Update the displayed date | |
document.getElementById('slider-value').innerHTML = dates[index]; | |
document.getElementById('date-input').value = dates[index]; | |
// Hide all images | |
document.querySelectorAll('.leaflet-image-layer').forEach(function(layer) { | |
layer.style.display = 'none'; | |
}); | |
// Show the current image | |
document.querySelectorAll('.leaflet-image-layer')[index].style.display = 'block'; | |
currentIndex = index; | |
} | |
function updateFromSlider(value) { | |
updateImage(parseFloat(value)); | |
} | |
function updateFromInput(inputDate) { | |
var index = dates.indexOf(inputDate); | |
if (index !== -1) { | |
document.getElementById('image-slider').value = index; | |
updateImage(index); | |
} else { | |
alert('Invalid date. Please enter a date in the format YYYY-MM-DD that exists in the dataset.'); | |
} | |
} | |
// Initially show only the first image | |
document.addEventListener('DOMContentLoaded', function() { | |
document.querySelectorAll('.leaflet-image-layer').forEach(function(layer, index) { | |
layer.style.display = index === 0 ? 'block' : 'none'; | |
}); | |
}); | |
</script> | |
{% endmacro %} | |
""" | |
template = template_1+template_2+template_3 | |
# Add the custom control to the map | |
macro = MacroElement() | |
macro._template = Template(template) | |
m.get_root().add_child(macro) | |
colormap_hail = cm.LinearColormap( | |
colors=['blue', 'lightblue', 'pink', 'red'], vmin=0.01, vmax=2) | |
# Add the color legend to the map | |
colormap_hail.caption = 'Legend: Hail (Inches)' | |
colormap_hail.add_to(m) | |
return m | |
files = [ | |
"data/2023_hail.h5", | |
"data/2022_hail.h5", | |
"data/2021_hail.h5", | |
"data/2020_hail.h5" | |
] | |
all_dates = [] | |
for f in files: | |
with h5py.File(f, 'r') as f: | |
dates = f['dates'][:] | |
print(dates) | |
all_dates.append(dates) | |
#Set up 2 Columns | |
st.set_page_config(layout="wide") | |
col1, col2 = st.columns((2)) | |
#Input Values | |
address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126") | |
date_focus = st.sidebar.date_input("Date", pd.Timestamp(2023, 7, 1)) | |
within_days = st.sidebar.selectbox('Days Within', (30, 90)) | |
# start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2023, 1, 1)) | |
# end_date = st.sidebar.date_input("End Date", pd.Timestamp(2023, 12, 31)) | |
start_date = date_focus+pd.Timedelta(days=-within_days) | |
end_date = date_focus+pd.Timedelta(days=within_days) | |
date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d') | |
circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25)) | |
zoom_dic = {5: 12, 10: 11, 25: 10} | |
zoom = zoom_dic[circle_radius] | |
#Geocode and get Data | |
result = geocode(address) | |
lat, lon = result.values[0] | |
crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb')) | |
transform = crs_dic['affine'] | |
row, col = rasterio.transform.rowcol(transform, lon, lat) | |
# center=row,col | |
radius = int(np.ceil(circle_radius*1.6)) | |
crop_coords = col-radius, row-radius, col+radius+1, row+radius+1 | |
files = glob.glob(r'webp/**/*.webp', recursive=True) | |
files_dates_selected = [i for i in files if any( | |
i for j in date_range if str(j) in re.search(r'(\d{8})', i).group())] | |
print(files_dates_selected) | |
# # Get Data | |
# df_data, max_values = get_data(row, col, radius) | |
# df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'") | |
# df_data['Max'] = df_data['Max'].round(3) | |
# df_data['Actual'] = df_data['Actual'].round(3) | |
# # Create the bar chart | |
# fig = alt.Chart(df_data).mark_bar(size=3, color='red').encode( | |
# x='Date:T', # Temporal data type | |
# y='Actual:Q', # Quantitative data type | |
# color='Actual:Q', # Color based on Actual values | |
# tooltip=[ # Adding tooltips | |
# alt.Tooltip('Date:T', title='Date'), | |
# alt.Tooltip('Actual:Q', title='Actual Value'), | |
# alt.Tooltip('Max:Q', title=f'Max Value with {circle_radius} Miles') | |
# ] | |
# ).configure( | |
# view=alt.ViewConfig( | |
# strokeOpacity=0 # No border around the chart | |
# ) | |
# ).configure_axis( | |
# grid=False # Disable grid lines | |
# ).configure_legend( | |
# fillColor='transparent', # Ensure no legend is shown | |
# strokeColor='transparent' | |
# ) | |
with col1: | |
st.title(f'Hail') | |
# try: | |
# st.altair_chart(fig, use_container_width=True) | |
# csv = convert_df(df_data) | |
# st.download_button( | |
# label="Download data as CSV", | |
# data=csv, | |
# file_name='data.csv', | |
# mime='text/csv') | |
# except: | |
# pass | |
with col2: | |
st.title('Hail Mesh') | |
if 'is_first_run' not in st.session_state: | |
# First run | |
st.session_state.is_first_run = True | |
st.components.v1.html(open("data/map.html", 'r').read(), height=500, width=500) | |
else: | |
with st.spinner("Loading... Please wait, it's gonna be great..."): | |
# st_folium(m, height=500) | |
# Not the first run; create a new map | |
m=map_folium(lat, lon,files_dates_selected, within_days ) | |
m.save("map_new.html") | |
st.components.v1.html(open("map_new.html", 'r').read(), height=500, width=500) | |
# st.bokeh_chart(hv.render(nice_plot*points_lat_lon, backend='bokeh'),use_container_width=True) | |
st.markdown(""" <style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> """, unsafe_allow_html=True) | |