Spaces:
Runtime error
Runtime error
mattricesound
commited on
Commit
•
ccecb22
1
Parent(s):
647e1a1
Update file structure and remove os path dependency for umx. Increase default sr to 44.1kHz
Browse files- README.md +1 -0
- config.yaml +1 -1
- exp/audio_diffusion.yaml +3 -2
- exp/umx.yaml +3 -2
- models.py +0 -196
- train.py +2 -2
- utils.py +0 -71
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
## Install Packages
|
3 |
`python3 -m venv env`
|
4 |
`pip install -e .`
|
|
|
5 |
|
6 |
## Download [GuitarFX Dataset] (https://zenodo.org/record/7044411/)
|
7 |
`./download_egfx.sh`
|
|
|
2 |
## Install Packages
|
3 |
`python3 -m venv env`
|
4 |
`pip install -e .`
|
5 |
+
`pip install -e umx`
|
6 |
|
7 |
## Download [GuitarFX Dataset] (https://zenodo.org/record/7044411/)
|
8 |
`./download_egfx.sh`
|
config.yaml
CHANGED
@@ -4,7 +4,7 @@ defaults:
|
|
4 |
seed: 12345
|
5 |
train: True
|
6 |
length: 262144
|
7 |
-
sample_rate:
|
8 |
logs_dir: "./logs"
|
9 |
log_every_n_steps: 1000
|
10 |
|
|
|
4 |
seed: 12345
|
5 |
train: True
|
6 |
length: 262144
|
7 |
+
sample_rate: 48000
|
8 |
logs_dir: "./logs"
|
9 |
log_every_n_steps: 1000
|
10 |
|
exp/audio_diffusion.yaml
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
# @package _global_
|
2 |
model:
|
3 |
-
_target_: models.RemFXModel
|
4 |
lr: 1e-4
|
5 |
lr_beta1: 0.95
|
6 |
lr_beta2: 0.999
|
7 |
lr_eps: 1e-6
|
8 |
lr_weight_decay: 1e-3
|
|
|
9 |
network:
|
10 |
-
_target_: models.DiffusionGenerationModel
|
11 |
n_channels: 1
|
12 |
datamodule:
|
13 |
dataset:
|
|
|
1 |
# @package _global_
|
2 |
model:
|
3 |
+
_target_: remfx.models.RemFXModel
|
4 |
lr: 1e-4
|
5 |
lr_beta1: 0.95
|
6 |
lr_beta2: 0.999
|
7 |
lr_eps: 1e-6
|
8 |
lr_weight_decay: 1e-3
|
9 |
+
sample_rate: ${sample_rate}
|
10 |
network:
|
11 |
+
_target_: remfx.models.DiffusionGenerationModel
|
12 |
n_channels: 1
|
13 |
datamodule:
|
14 |
dataset:
|
exp/umx.yaml
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
# @package _global_
|
2 |
model:
|
3 |
-
_target_: models.RemFXModel
|
4 |
lr: 1e-4
|
5 |
lr_beta1: 0.95
|
6 |
lr_beta2: 0.999
|
7 |
lr_eps: 1e-6
|
8 |
lr_weight_decay: 1e-3
|
|
|
9 |
network:
|
10 |
-
_target_: models.OpenUnmixModel
|
11 |
n_fft: 2048
|
12 |
hop_length: 512
|
13 |
n_channels: 1
|
|
|
1 |
# @package _global_
|
2 |
model:
|
3 |
+
_target_: remfx.models.RemFXModel
|
4 |
lr: 1e-4
|
5 |
lr_beta1: 0.95
|
6 |
lr_beta2: 0.999
|
7 |
lr_eps: 1e-6
|
8 |
lr_weight_decay: 1e-3
|
9 |
+
sample_rate: ${sample_rate}
|
10 |
network:
|
11 |
+
_target_: remfx.models.OpenUnmixModel
|
12 |
n_fft: 2048
|
13 |
hop_length: 512
|
14 |
n_channels: 1
|
models.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import Tensor, nn
|
3 |
-
import pytorch_lightning as pl
|
4 |
-
from einops import rearrange
|
5 |
-
import wandb
|
6 |
-
from audio_diffusion_pytorch import AudioDiffusionModel
|
7 |
-
import auraloss
|
8 |
-
|
9 |
-
import sys
|
10 |
-
|
11 |
-
sys.path.append("./umx")
|
12 |
-
from umx.openunmix.model import OpenUnmix, Separator
|
13 |
-
|
14 |
-
|
15 |
-
SAMPLE_RATE = 22050 # From audio-diffusion-pytorch
|
16 |
-
|
17 |
-
|
18 |
-
class RemFXModel(pl.LightningModule):
|
19 |
-
def __init__(
|
20 |
-
self,
|
21 |
-
lr: float,
|
22 |
-
lr_beta1: float,
|
23 |
-
lr_beta2: float,
|
24 |
-
lr_eps: float,
|
25 |
-
lr_weight_decay: float,
|
26 |
-
network: nn.Module,
|
27 |
-
):
|
28 |
-
super().__init__()
|
29 |
-
self.lr = lr
|
30 |
-
self.lr_beta1 = lr_beta1
|
31 |
-
self.lr_beta2 = lr_beta2
|
32 |
-
self.lr_eps = lr_eps
|
33 |
-
self.lr_weight_decay = lr_weight_decay
|
34 |
-
self.model = network
|
35 |
-
|
36 |
-
@property
|
37 |
-
def device(self):
|
38 |
-
return next(self.model.parameters()).device
|
39 |
-
|
40 |
-
def configure_optimizers(self):
|
41 |
-
optimizer = torch.optim.AdamW(
|
42 |
-
list(self.model.parameters()),
|
43 |
-
lr=self.lr,
|
44 |
-
betas=(self.lr_beta1, self.lr_beta2),
|
45 |
-
eps=self.lr_eps,
|
46 |
-
weight_decay=self.lr_weight_decay,
|
47 |
-
)
|
48 |
-
return optimizer
|
49 |
-
|
50 |
-
def training_step(self, batch, batch_idx):
|
51 |
-
loss = self.common_step(batch, batch_idx, mode="train")
|
52 |
-
return loss
|
53 |
-
|
54 |
-
def validation_step(self, batch, batch_idx):
|
55 |
-
loss = self.common_step(batch, batch_idx, mode="valid")
|
56 |
-
|
57 |
-
def common_step(self, batch, batch_idx, mode: str = "train"):
|
58 |
-
loss = self.model(batch)
|
59 |
-
self.log(f"{mode}_loss", loss)
|
60 |
-
return loss
|
61 |
-
|
62 |
-
def on_validation_epoch_start(self):
|
63 |
-
self.log_next = True
|
64 |
-
|
65 |
-
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
|
66 |
-
if self.log_next:
|
67 |
-
x, target, label = batch
|
68 |
-
y = self.model.sample(x)
|
69 |
-
log_wandb_audio_batch(
|
70 |
-
logger=self.logger,
|
71 |
-
id="sample",
|
72 |
-
samples=x.cpu(),
|
73 |
-
sampling_rate=SAMPLE_RATE,
|
74 |
-
caption=f"Epoch {self.current_epoch}",
|
75 |
-
)
|
76 |
-
log_wandb_audio_batch(
|
77 |
-
logger=self.logger,
|
78 |
-
id="prediction",
|
79 |
-
samples=y.cpu(),
|
80 |
-
sampling_rate=SAMPLE_RATE,
|
81 |
-
caption=f"Epoch {self.current_epoch}",
|
82 |
-
)
|
83 |
-
log_wandb_audio_batch(
|
84 |
-
logger=self.logger,
|
85 |
-
id="target",
|
86 |
-
samples=target.cpu(),
|
87 |
-
sampling_rate=SAMPLE_RATE,
|
88 |
-
caption=f"Epoch {self.current_epoch}",
|
89 |
-
)
|
90 |
-
self.log_next = False
|
91 |
-
|
92 |
-
|
93 |
-
class OpenUnmixModel(torch.nn.Module):
|
94 |
-
def __init__(
|
95 |
-
self,
|
96 |
-
n_fft: int = 2048,
|
97 |
-
hop_length: int = 512,
|
98 |
-
n_channels: int = 1,
|
99 |
-
alpha: float = 0.3,
|
100 |
-
sample_rate: int = 22050,
|
101 |
-
):
|
102 |
-
super().__init__()
|
103 |
-
self.n_channels = n_channels
|
104 |
-
self.n_fft = n_fft
|
105 |
-
self.hop_length = hop_length
|
106 |
-
self.alpha = alpha
|
107 |
-
window = torch.hann_window(n_fft)
|
108 |
-
self.register_buffer("window", window)
|
109 |
-
|
110 |
-
self.num_bins = self.n_fft // 2 + 1
|
111 |
-
self.sample_rate = sample_rate
|
112 |
-
self.model = OpenUnmix(
|
113 |
-
nb_channels=self.n_channels,
|
114 |
-
nb_bins=self.num_bins,
|
115 |
-
)
|
116 |
-
self.separator = Separator(
|
117 |
-
target_models={"other": self.model},
|
118 |
-
nb_channels=self.n_channels,
|
119 |
-
sample_rate=self.sample_rate,
|
120 |
-
n_fft=self.n_fft,
|
121 |
-
n_hop=self.hop_length,
|
122 |
-
)
|
123 |
-
self.loss_fn = auraloss.freq.MultiResolutionSTFTLoss(
|
124 |
-
n_bins=self.num_bins, sample_rate=self.sample_rate
|
125 |
-
)
|
126 |
-
|
127 |
-
def forward(self, batch):
|
128 |
-
x, target, label = batch
|
129 |
-
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
|
130 |
-
Y = self.model(X)
|
131 |
-
sep_out = self.separator(x).squeeze(1)
|
132 |
-
loss = self.loss_fn(sep_out, target)
|
133 |
-
|
134 |
-
return loss
|
135 |
-
|
136 |
-
def sample(self, x: Tensor) -> Tensor:
|
137 |
-
return self.separator(x).squeeze(1)
|
138 |
-
|
139 |
-
|
140 |
-
class DiffusionGenerationModel(nn.Module):
|
141 |
-
def __init__(self, n_channels: int = 1):
|
142 |
-
super().__init__()
|
143 |
-
self.model = AudioDiffusionModel(in_channels=n_channels)
|
144 |
-
|
145 |
-
def forward(self, batch):
|
146 |
-
x, target, label = batch
|
147 |
-
return self.model(x)
|
148 |
-
|
149 |
-
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
|
150 |
-
noise = torch.randn(x.shape).to(x)
|
151 |
-
return self.model.sample(noise, num_steps=num_steps)
|
152 |
-
|
153 |
-
|
154 |
-
def log_wandb_audio_batch(
|
155 |
-
logger: pl.loggers.WandbLogger,
|
156 |
-
id: str,
|
157 |
-
samples: Tensor,
|
158 |
-
sampling_rate: int,
|
159 |
-
caption: str = "",
|
160 |
-
):
|
161 |
-
num_items = samples.shape[0]
|
162 |
-
samples = rearrange(samples, "b c t -> b t c")
|
163 |
-
for idx in range(num_items):
|
164 |
-
logger.experiment.log(
|
165 |
-
{
|
166 |
-
f"{id}_{idx}": wandb.Audio(
|
167 |
-
samples[idx].cpu().numpy(),
|
168 |
-
caption=caption,
|
169 |
-
sample_rate=sampling_rate,
|
170 |
-
)
|
171 |
-
}
|
172 |
-
)
|
173 |
-
|
174 |
-
|
175 |
-
def spectrogram(
|
176 |
-
x: torch.Tensor,
|
177 |
-
window: torch.Tensor,
|
178 |
-
n_fft: int,
|
179 |
-
hop_length: int,
|
180 |
-
alpha: float,
|
181 |
-
) -> torch.Tensor:
|
182 |
-
bs, chs, samp = x.size()
|
183 |
-
x = x.view(bs * chs, -1) # move channels onto batch dim
|
184 |
-
|
185 |
-
X = torch.stft(
|
186 |
-
x,
|
187 |
-
n_fft=n_fft,
|
188 |
-
hop_length=hop_length,
|
189 |
-
window=window,
|
190 |
-
return_complex=True,
|
191 |
-
)
|
192 |
-
|
193 |
-
# move channels back
|
194 |
-
X = X.view(bs, chs, X.shape[-2], X.shape[-1])
|
195 |
-
|
196 |
-
return torch.pow(X.abs() + 1e-8, alpha)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train.py
CHANGED
@@ -2,10 +2,10 @@ from pytorch_lightning.loggers import WandbLogger
|
|
2 |
import pytorch_lightning as pl
|
3 |
from torch.utils.data import DataLoader
|
4 |
from datasets import GuitarFXDataset
|
5 |
-
from models import DiffusionGenerationModel, OpenUnmixModel
|
6 |
import hydra
|
7 |
from omegaconf import DictConfig
|
8 |
-
import utils
|
9 |
|
10 |
log = utils.get_logger(__name__)
|
11 |
|
|
|
2 |
import pytorch_lightning as pl
|
3 |
from torch.utils.data import DataLoader
|
4 |
from datasets import GuitarFXDataset
|
5 |
+
from remfx.models import DiffusionGenerationModel, OpenUnmixModel
|
6 |
import hydra
|
7 |
from omegaconf import DictConfig
|
8 |
+
import remfx.utils as utils
|
9 |
|
10 |
log = utils.get_logger(__name__)
|
11 |
|
utils.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
from typing import List
|
3 |
-
import pytorch_lightning as pl
|
4 |
-
from omegaconf import DictConfig
|
5 |
-
from pytorch_lightning.utilities import rank_zero_only
|
6 |
-
|
7 |
-
|
8 |
-
def get_logger(name=__name__) -> logging.Logger:
|
9 |
-
"""Initializes multi-GPU-friendly python command line logger."""
|
10 |
-
|
11 |
-
logger = logging.getLogger(name)
|
12 |
-
|
13 |
-
# this ensures all logging levels get marked with the rank zero decorator
|
14 |
-
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
15 |
-
for level in (
|
16 |
-
"debug",
|
17 |
-
"info",
|
18 |
-
"warning",
|
19 |
-
"error",
|
20 |
-
"exception",
|
21 |
-
"fatal",
|
22 |
-
"critical",
|
23 |
-
):
|
24 |
-
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
25 |
-
|
26 |
-
return logger
|
27 |
-
|
28 |
-
|
29 |
-
log = get_logger(__name__)
|
30 |
-
|
31 |
-
|
32 |
-
@rank_zero_only
|
33 |
-
def log_hyperparameters(
|
34 |
-
config: DictConfig,
|
35 |
-
model: pl.LightningModule,
|
36 |
-
datamodule: pl.LightningDataModule,
|
37 |
-
trainer: pl.Trainer,
|
38 |
-
callbacks: List[pl.Callback],
|
39 |
-
logger: pl.loggers.LightningLoggerBase,
|
40 |
-
) -> None:
|
41 |
-
"""Controls which config parts are saved by Lightning loggers.
|
42 |
-
Additionaly saves:
|
43 |
-
- number of model parameters
|
44 |
-
"""
|
45 |
-
|
46 |
-
if not trainer.logger:
|
47 |
-
return
|
48 |
-
|
49 |
-
hparams = {}
|
50 |
-
|
51 |
-
# choose which parts of hydra config will be saved to loggers
|
52 |
-
hparams["model"] = config["model"]
|
53 |
-
|
54 |
-
# save number of model parameters
|
55 |
-
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
|
56 |
-
hparams["model/params/trainable"] = sum(
|
57 |
-
p.numel() for p in model.parameters() if p.requires_grad
|
58 |
-
)
|
59 |
-
hparams["model/params/non_trainable"] = sum(
|
60 |
-
p.numel() for p in model.parameters() if not p.requires_grad
|
61 |
-
)
|
62 |
-
|
63 |
-
hparams["datamodule"] = config["datamodule"]
|
64 |
-
hparams["trainer"] = config["trainer"]
|
65 |
-
|
66 |
-
if "seed" in config:
|
67 |
-
hparams["seed"] = config["seed"]
|
68 |
-
if "callbacks" in config:
|
69 |
-
hparams["callbacks"] = config["callbacks"]
|
70 |
-
|
71 |
-
logger.experiment.config.update(hparams)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|