Spaces:
Runtime error
Runtime error
mattricesound
commited on
Commit
•
93ba80d
1
Parent(s):
ab6f776
Fix processing of stereo clips
Browse files
app.py
CHANGED
@@ -42,14 +42,14 @@ def load_models():
|
|
42 |
def audio_classification(audio_file):
|
43 |
audio, sr = torchaudio.load(audio_file)
|
44 |
audio = torchaudio.transforms.Resample(sr, cfg.sample_rate)(audio)
|
45 |
-
# Add dimension for batch
|
46 |
-
audio = audio.unsqueeze(0)
|
47 |
# Convert to mono
|
48 |
audio = audio.mean(0, keepdim=True)
|
|
|
|
|
49 |
audio = audio.to(device)
|
50 |
|
51 |
with torch.no_grad():
|
52 |
-
#
|
53 |
print("Detecting effects")
|
54 |
labels = torch.tensor(classifier(audio))
|
55 |
labels_dict = {
|
@@ -62,10 +62,10 @@ def audio_classification(audio_file):
|
|
62 |
def audio_removal(audio_file, labels, threshold):
|
63 |
audio, sr = torchaudio.load(audio_file)
|
64 |
audio = torchaudio.transforms.Resample(sr, cfg.sample_rate)(audio)
|
65 |
-
# Add dimension for batch
|
66 |
-
audio = audio.unsqueeze(0)
|
67 |
# Convert to mono
|
68 |
audio = audio.mean(0, keepdim=True)
|
|
|
|
|
69 |
audio = audio.to(device)
|
70 |
|
71 |
label_names = [f"RandomPedalboard{lab['label']}" for lab in labels["confidences"]]
|
|
|
42 |
def audio_classification(audio_file):
|
43 |
audio, sr = torchaudio.load(audio_file)
|
44 |
audio = torchaudio.transforms.Resample(sr, cfg.sample_rate)(audio)
|
|
|
|
|
45 |
# Convert to mono
|
46 |
audio = audio.mean(0, keepdim=True)
|
47 |
+
# Add dimension for batch
|
48 |
+
audio = audio.unsqueeze(0)
|
49 |
audio = audio.to(device)
|
50 |
|
51 |
with torch.no_grad():
|
52 |
+
# Classify
|
53 |
print("Detecting effects")
|
54 |
labels = torch.tensor(classifier(audio))
|
55 |
labels_dict = {
|
|
|
62 |
def audio_removal(audio_file, labels, threshold):
|
63 |
audio, sr = torchaudio.load(audio_file)
|
64 |
audio = torchaudio.transforms.Resample(sr, cfg.sample_rate)(audio)
|
|
|
|
|
65 |
# Convert to mono
|
66 |
audio = audio.mean(0, keepdim=True)
|
67 |
+
# Add dimension for batch
|
68 |
+
audio = audio.unsqueeze(0)
|
69 |
audio = audio.to(device)
|
70 |
|
71 |
label_names = [f"RandomPedalboard{lab['label']}" for lab in labels["confidences"]]
|