RemFx / remfx /models.py
mattricesound's picture
Remove umx
7e4b346
import torch
import numpy as np
import torchmetrics
import pytorch_lightning as pl
from torch import Tensor, nn
from torchaudio.models import HDemucs
from auraloss.time import SISDRLoss
from auraloss.freq import MultiResolutionSTFTLoss
from remfx.utils import spectrogram
from remfx.tcn import TCN
from remfx.utils import causal_crop
from remfx import effects
from remfx.classifier import Cnn14
import asteroid
import random
ALL_EFFECTS = effects.Pedalboard_Effects
class RemFXChainInference(pl.LightningModule):
def __init__(
self,
models,
sample_rate,
num_bins,
effect_order,
classifier=None,
shuffle_effect_order=False,
use_all_effect_models=False,
):
super().__init__()
self.model = models
self.mrstftloss = MultiResolutionSTFTLoss(
n_bins=num_bins, sample_rate=sample_rate
)
self.l1loss = nn.L1Loss()
self.metrics = nn.ModuleDict(
{
"SISDR": SISDRLoss(),
"STFT": MultiResolutionSTFTLoss(),
}
)
self.sample_rate = sample_rate
self.effect_order = effect_order
self.classifier = classifier
self.shuffle_effect_order = shuffle_effect_order
self.output_str = "IN_SISDR,OUT_SISDR,IN_STFT,OUT_STFT\n"
self.use_all_effect_models = use_all_effect_models
def forward(self, batch, batch_idx, order=None, verbose=False):
x, y, _, rem_fx_labels = batch
# Use chain of effects defined in config
if order:
effects_order = order
else:
effects_order = self.effect_order
# Use classifier labels
if self.classifier:
threshold = 0.5
with torch.no_grad():
labels = torch.hstack(self.classifier(x))
rem_fx_labels = torch.where(labels > threshold, 1.0, 0.0)
if self.use_all_effect_models:
effects_present = [
[ALL_EFFECTS[i] for i, effect in enumerate(effect_label)]
for effect_label in rem_fx_labels
]
else:
effects_present = [
[
ALL_EFFECTS[i]
for i, effect in enumerate(effect_label)
if effect == 1.0
]
for effect_label in rem_fx_labels
]
effects_present_name = [
[
ALL_EFFECTS[i].__name__
for i, effect in enumerate(effect_label)
if effect == 1.0
]
for effect_label in rem_fx_labels
]
if verbose:
print("Detected effects:", effects_present_name[0])
print("Removing effects...")
output = []
with torch.no_grad():
for i, (elem, effects_list) in enumerate(zip(x, effects_present)):
elem = elem.unsqueeze(0) # Add batch dim
# Get the correct effect by search for names in effects_order
effect_list_names = [effect.__name__ for effect in effects_list]
effects = [
effect for effect in effects_order if effect in effect_list_names
]
for effect in effects:
# Sample the model
elem = self.model[effect].model.sample(elem)
output.append(elem.squeeze(0))
output = torch.stack(output)
loss = self.mrstftloss(output, y) + self.l1loss(output, y) * 100
return loss, output
def test_step(self, batch, batch_idx):
x, y, _, _ = batch # x, y = (B, C, T), (B, C, T)
if self.shuffle_effect_order:
# Random order
random.shuffle(self.effect_order)
loss, output = self.forward(batch, batch_idx, order=self.effect_order)
# Crop target to match output
if output.shape[-1] < y.shape[-1]:
y = causal_crop(y, output.shape[-1])
self.log("test_loss", loss)
# Metric logging
with torch.no_grad():
for metric in self.metrics:
# SISDR returns negative values, so negate them
if metric == "SISDR":
negate = -1
else:
negate = 1
self.log(
f"test_{metric}", # + "".join(self.effect_order).replace("RandomPedalboard", ""),
negate * self.metrics[metric](output, y),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
self.log(
f"Input_{metric}",
negate * self.metrics[metric](x, y),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
return loss
def sample(self, batch):
return self.forward(batch, 0)[1]
class RemFX(pl.LightningModule):
def __init__(
self,
lr: float,
lr_beta1: float,
lr_beta2: float,
lr_eps: float,
lr_weight_decay: float,
sample_rate: float,
network: nn.Module,
):
super().__init__()
self.lr = lr
self.lr_beta1 = lr_beta1
self.lr_beta2 = lr_beta2
self.lr_eps = lr_eps
self.lr_weight_decay = lr_weight_decay
self.sample_rate = sample_rate
self.model = network
self.metrics = nn.ModuleDict(
{
"SISDR": SISDRLoss(),
"STFT": MultiResolutionSTFTLoss(),
}
)
# Log first batch metrics input vs output only once
self.log_train_audio = True
self.output_str = "IN_SISDR,OUT_SISDR,IN_STFT,OUT_STFT\n"
@property
def device(self):
return next(self.model.parameters()).device
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
list(self.model.parameters()),
lr=self.lr,
betas=(self.lr_beta1, self.lr_beta2),
eps=self.lr_eps,
weight_decay=self.lr_weight_decay,
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
[0.8 * self.trainer.max_steps, 0.95 * self.trainer.max_steps],
gamma=0.1,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"monitor": "val_loss",
"interval": "step",
"frequency": 1,
},
}
def training_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="train")
def validation_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="valid")
def test_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="test")
def common_step(self, batch, batch_idx, mode: str = "train"):
x, y, _, _ = batch # x, y = (B, C, T), (B, C, T)
loss, output = self.model((x, y))
# Crop target to match output
target = y
if output.shape[-1] < y.shape[-1]:
target = causal_crop(y, output.shape[-1])
self.log(f"{mode}_loss", loss)
# Metric logging
with torch.no_grad():
for metric in self.metrics:
# SISDR returns negative values, so negate them
if metric == "SISDR":
negate = -1
else:
negate = 1
# Only Log FAD on test set
if metric == "FAD" and mode != "test":
continue
self.log(
f"{mode}_{metric}",
negate * self.metrics[metric](output, target),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
self.log(
f"Input_{metric}",
negate * self.metrics[metric](x, y),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
return loss
class DemucsModel(nn.Module):
def __init__(self, sample_rate, **kwargs) -> None:
super().__init__()
self.model = HDemucs(**kwargs)
self.num_bins = kwargs["nfft"] // 2 + 1
self.mrstftloss = MultiResolutionSTFTLoss(
n_bins=self.num_bins, sample_rate=sample_rate
)
self.l1loss = nn.L1Loss()
def forward(self, batch):
x, target = batch
output = self.model(x).squeeze(1)
loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
return loss, output
def sample(self, x: Tensor) -> Tensor:
return self.model(x).squeeze(1)
class DPTNetModel(nn.Module):
def __init__(self, sample_rate, num_bins, **kwargs):
super().__init__()
self.model = asteroid.models.dptnet.DPTNet(**kwargs)
self.num_bins = num_bins
self.mrstftloss = MultiResolutionSTFTLoss(
n_bins=self.num_bins, sample_rate=sample_rate
)
self.l1loss = nn.L1Loss()
def forward(self, batch):
x, target = batch
output = self.model(x.squeeze(1))
loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
return loss, output
def sample(self, x: Tensor) -> Tensor:
return self.model(x.squeeze(1))
class DCUNetModel(nn.Module):
def __init__(self, sample_rate, num_bins, **kwargs):
super().__init__()
self.model = asteroid.models.DCUNet(**kwargs)
self.mrstftloss = MultiResolutionSTFTLoss(
n_bins=num_bins, sample_rate=sample_rate
)
self.l1loss = nn.L1Loss()
def forward(self, batch):
x, target = batch
output = self.model(x.squeeze(1)) # B x T
# Crop target to match output
if output.shape[-1] < target.shape[-1]:
target = causal_crop(target, output.shape[-1])
loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
return loss, output
def sample(self, x: Tensor) -> Tensor:
output = self.model(x.squeeze(1)) # B x T
return output
class TCNModel(nn.Module):
def __init__(self, sample_rate, num_bins, **kwargs):
super().__init__()
self.model = TCN(**kwargs)
self.mrstftloss = MultiResolutionSTFTLoss(
n_bins=num_bins, sample_rate=sample_rate
)
self.l1loss = nn.L1Loss()
def forward(self, batch):
x, target = batch
output = self.model(x) # B x 1 x T
# Crop target to match output
if output.shape[-1] < target.shape[-1]:
target = causal_crop(target, output.shape[-1])
loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
return loss, output
def sample(self, x: Tensor) -> Tensor:
output = self.model(x) # B x 1 x T
return output
def mixup(x: torch.Tensor, y: torch.Tensor, alpha: float = 1.0):
"""Mixup data augmentation for time-domain signals.
Args:
x (torch.Tensor): Batch of time-domain signals, shape [batch, 1, time].
y (torch.Tensor): Batch of labels, shape [batch, n_classes].
alpha (float): Beta distribution parameter.
Returns:
torch.Tensor: Mixed time-domain signals, shape [batch, 1, time].
torch.Tensor: Mixed labels, shape [batch, n_classes].
torch.Tensor: Lambda
"""
batch_size = x.size(0)
if alpha > 0:
# lam = np.random.beta(alpha, alpha)
lam = np.random.uniform(0.25, 0.75, batch_size)
lam = torch.from_numpy(lam).float().to(x.device).view(batch_size, 1, 1)
else:
lam = 1
if np.random.rand() > 0.5:
index = torch.randperm(batch_size).to(x.device)
mixed_x = lam * x + (1 - lam) * x[index, :]
mixed_y = torch.logical_or(y, y[index, :]).float()
else:
mixed_x = x
mixed_y = y
return mixed_x, mixed_y, lam
class FXClassifier(pl.LightningModule):
def __init__(
self,
lr: float,
lr_weight_decay: float,
sample_rate: float,
network: nn.Module,
mixup: bool = False,
label_smoothing: float = 0.0,
):
super().__init__()
self.lr = lr
self.lr_weight_decay = lr_weight_decay
self.sample_rate = sample_rate
self.network = network
self.effects = ["Reverb", "Chorus", "Delay", "Distortion", "Compressor"]
self.mixup = mixup
self.label_smoothing = label_smoothing
if isinstance(self.network, Cnn14):
self.loss_fn = torch.nn.BCELoss()
self.metrics = torch.nn.ModuleDict()
for effect in self.effects:
self.metrics[
f"train_{effect}_acc"
] = torchmetrics.classification.Accuracy(task="binary")
self.metrics[
f"valid_{effect}_acc"
] = torchmetrics.classification.Accuracy(task="binary")
self.metrics[
f"test_{effect}_acc"
] = torchmetrics.classification.Accuracy(task="binary")
else:
self.loss_fn = torch.nn.CrossEntropyLoss(label_smoothing=label_smoothing)
self.train_f1 = torchmetrics.classification.MultilabelF1Score(
5, average="none", multidim_average="global"
)
self.val_f1 = torchmetrics.classification.MultilabelF1Score(
5, average="none", multidim_average="global"
)
self.test_f1 = torchmetrics.classification.MultilabelF1Score(
5, average="none", multidim_average="global"
)
self.train_f1_avg = torchmetrics.classification.MultilabelF1Score(
5, threshold=0.5, average="macro", multidim_average="global"
)
self.val_f1_avg = torchmetrics.classification.MultilabelF1Score(
5, threshold=0.5, average="macro", multidim_average="global"
)
self.test_f1_avg = torchmetrics.classification.MultilabelF1Score(
5, threshold=0.5, average="macro", multidim_average="global"
)
self.metrics = {
"train": self.train_f1,
"valid": self.val_f1,
"test": self.test_f1,
}
self.avg_metrics = {
"train": self.train_f1_avg,
"valid": self.val_f1_avg,
"test": self.test_f1_avg,
}
def forward(self, x: torch.Tensor, train: bool = False):
return self.network(x, train=train)
def common_step(self, batch, batch_idx, mode: str = "train"):
train = True if mode == "train" else False
x, y, dry_label, wet_label = batch
if mode == "train" and self.mixup:
x_mixed, label_mixed, lam = mixup(x, wet_label)
outputs = self(x_mixed, train)
loss = 0
for idx, output in enumerate(outputs):
loss += self.loss_fn(output.squeeze(-1), label_mixed[..., idx])
else:
outputs = self(x, train)
loss = 0
# Multi-head binary loss
if isinstance(self.network, Cnn14):
for idx, output in enumerate(outputs):
loss += self.loss_fn(output.squeeze(-1), wet_label[..., idx])
else:
# Output is a 2d tensor
loss = self.loss_fn(outputs, wet_label)
self.log(
f"{mode}_loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)
if isinstance(self.network, Cnn14):
acc_metrics = []
for idx, effect_name in enumerate(self.effects):
acc_metric = self.metrics[f"{mode}_{effect_name}_acc"](
outputs[idx].squeeze(-1), wet_label[..., idx]
)
self.log(
f"{mode}_{effect_name}_acc",
acc_metric,
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)
acc_metrics.append(acc_metric)
self.log(
f"{mode}_avg_acc",
torch.mean(torch.stack(acc_metrics)),
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)
else:
metrics = self.metrics[mode](torch.sigmoid(outputs), wet_label.long())
for idx, effect_name in enumerate(self.effects):
self.log(
f"{mode}_f1_{effect_name}",
metrics[idx],
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)
avg_metrics = self.avg_metrics[mode](
torch.sigmoid(outputs), wet_label.long()
)
self.log(
f"{mode}_avg_acc",
avg_metrics,
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)
return loss
def training_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="train")
def validation_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="valid")
def test_step(self, batch, batch_idx):
return self.common_step(batch, batch_idx, mode="test")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.network.parameters(),
lr=self.lr,
weight_decay=self.lr_weight_decay,
)
return optimizer