Spaces:
Runtime error
Runtime error
import pytorch_lightning as pl | |
import hydra | |
from omegaconf import DictConfig | |
import remfx.utils as utils | |
from pytorch_lightning.utilities.model_summary import ModelSummary | |
from remfx.models import RemFXModel | |
import torch | |
log = utils.get_logger(__name__) | |
def main(cfg: DictConfig): | |
# Apply seed for reproducibility | |
if cfg.seed: | |
pl.seed_everything(cfg.seed) | |
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.") | |
datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial") | |
log.info(f"Instantiating model <{cfg.model._target_}>.") | |
model = hydra.utils.instantiate(cfg.model, _convert_="partial") | |
state_dict = torch.load(cfg.ckpt_path, map_location=torch.device("cpu"))[ | |
"state_dict" | |
] | |
model.load_state_dict(state_dict) | |
# Init all callbacks | |
callbacks = [] | |
if "callbacks" in cfg: | |
for _, cb_conf in cfg["callbacks"].items(): | |
if "_target_" in cb_conf: | |
log.info(f"Instantiating callback <{cb_conf._target_}>.") | |
callbacks.append(hydra.utils.instantiate(cb_conf, _convert_="partial")) | |
logger = hydra.utils.instantiate(cfg.logger, _convert_="partial") | |
log.info(f"Instantiating trainer <{cfg.trainer._target_}>.") | |
trainer = hydra.utils.instantiate( | |
cfg.trainer, callbacks=callbacks, logger=logger, _convert_="partial" | |
) | |
log.info("Logging hyperparameters!") | |
utils.log_hyperparameters( | |
config=cfg, | |
model=model, | |
datamodule=datamodule, | |
trainer=trainer, | |
callbacks=callbacks, | |
logger=logger, | |
) | |
summary = ModelSummary(model) | |
print(summary) | |
trainer.test(model=model, datamodule=datamodule) | |
if __name__ == "__main__": | |
main() | |