Spaces:
Runtime error
Runtime error
import pytorch_lightning as pl | |
import hydra | |
from omegaconf import DictConfig | |
import remfx.utils as utils | |
import torch | |
from remfx.models import RemFXChainInference | |
log = utils.get_logger(__name__) | |
def main(cfg: DictConfig): | |
# Apply seed for reproducibility | |
if cfg.seed: | |
pl.seed_everything(cfg.seed) | |
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.") | |
datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial") | |
log.info("Instantiating Chain Inference Models") | |
models = {} | |
for effect in cfg.ckpts: | |
model = hydra.utils.instantiate(cfg.ckpts[effect].model, _convert_="partial") | |
ckpt_path = cfg.ckpts[effect].ckpt_path | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
state_dict = torch.load(ckpt_path, map_location=device)["state_dict"] | |
model.load_state_dict(state_dict) | |
model.to(device) | |
models[effect] = model | |
classifier = None | |
if "classifier" in cfg: | |
log.info(f"Instantiating classifier <{cfg.classifier._target_}>.") | |
classifier = hydra.utils.instantiate(cfg.classifier, _convert_="partial") | |
ckpt_path = cfg.classifier_ckpt | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
state_dict = torch.load(ckpt_path, map_location=device)["state_dict"] | |
classifier.load_state_dict(state_dict) | |
classifier.to(device) | |
callbacks = [] | |
if "callbacks" in cfg: | |
for _, cb_conf in cfg["callbacks"].items(): | |
if "_target_" in cb_conf: | |
log.info(f"Instantiating callback <{cb_conf._target_}>.") | |
callbacks.append(hydra.utils.instantiate(cb_conf, _convert_="partial")) | |
logger = hydra.utils.instantiate(cfg.logger, _convert_="partial") | |
log.info(f"Instantiating trainer <{cfg.trainer._target_}>.") | |
cfg.trainer.accelerator = "gpu" if torch.cuda.is_available() else "cpu" | |
trainer = hydra.utils.instantiate( | |
cfg.trainer, callbacks=callbacks, logger=logger, _convert_="partial" | |
) | |
log.info("Logging hyperparameters!") | |
utils.log_hyperparameters( | |
config=cfg, | |
model=model, | |
datamodule=datamodule, | |
trainer=trainer, | |
callbacks=callbacks, | |
logger=logger, | |
) | |
log.info("Instantiating Inference Model") | |
inference_model = RemFXChainInference( | |
models, | |
sample_rate=cfg.sample_rate, | |
num_bins=cfg.num_bins, | |
effect_order=cfg.inference_effects_ordering, | |
classifier=classifier, | |
shuffle_effect_order=cfg.inference_effects_shuffle, | |
use_all_effect_models=cfg.inference_use_all_effect_models, | |
) | |
trainer.test(model=inference_model, datamodule=datamodule) | |
if __name__ == "__main__": | |
main() | |