Spaces:
Runtime error
Runtime error
matt HOFFNER
commited on
Commit
Β·
f373356
1
Parent(s):
1300e36
working
Browse files- package.json +0 -2
- src/components/ChatWindow.jsx +16 -25
- src/embed/hf.ts +35 -55
package.json
CHANGED
@@ -15,8 +15,6 @@
|
|
15 |
"@types/react": "18.2.6",
|
16 |
"@types/react-dom": "18.2.4",
|
17 |
"@xenova/transformers": "^2.1.1",
|
18 |
-
"chromadb": "^1.5.2",
|
19 |
-
"cohere-ai": "^5.1.0",
|
20 |
"dexie": "^3.2.4",
|
21 |
"eslint": "8.40.0",
|
22 |
"eslint-config-next": "13.4.2",
|
|
|
15 |
"@types/react": "18.2.6",
|
16 |
"@types/react-dom": "18.2.4",
|
17 |
"@xenova/transformers": "^2.1.1",
|
|
|
|
|
18 |
"dexie": "^3.2.4",
|
19 |
"eslint": "8.40.0",
|
20 |
"eslint-config-next": "13.4.2",
|
src/components/ChatWindow.jsx
CHANGED
@@ -5,11 +5,8 @@ import MessageList from './MessageList';
|
|
5 |
import {FileLoader} from './FileLoader';
|
6 |
import Loader from "./Loader";
|
7 |
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
|
8 |
-
import {
|
9 |
-
import {
|
10 |
-
|
11 |
-
const client = new ChromaClient();
|
12 |
-
const embedder = new TransformersEmbeddingFunction({});
|
13 |
|
14 |
function ChatWindow({
|
15 |
stopStrings,
|
@@ -34,37 +31,31 @@ function ChatWindow({
|
|
34 |
console.log('found file text splitting into chunks')
|
35 |
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000 });
|
36 |
const docs = await textSplitter.createDocuments([fileText]);
|
37 |
-
console.log(`split docs: ${docs}`);
|
38 |
-
const collection = await client.createCollection({name: "docs", embeddingFunction: embedder })
|
39 |
-
console.log(`collection: ${collection}`);
|
40 |
let queryResult;
|
|
|
|
|
41 |
try {
|
42 |
-
await
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
});
|
51 |
-
console.log(queryResult);
|
52 |
-
} catch (err) {
|
53 |
-
console.log(err);
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
const qaPrompt =
|
58 |
`You are an AI assistant providing helpful advice. You are given the following extracted parts of a long document and a question. Provide a conversational answer based on the context provided.
|
59 |
You should only provide hyperlinks that reference the context below. Do NOT make up hyperlinks.
|
60 |
If you can't find the answer in the context below, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
61 |
If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
|
62 |
Question: ${userInput}
|
63 |
=========
|
64 |
-
${queryResult}
|
65 |
=========
|
66 |
Answer:
|
67 |
`
|
|
|
|
|
|
|
68 |
send(qaPrompt, maxTokens, stopStrings);
|
69 |
} else {
|
70 |
send(userInput, maxTokens, stopStrings);
|
|
|
5 |
import {FileLoader} from './FileLoader';
|
6 |
import Loader from "./Loader";
|
7 |
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
|
8 |
+
import { XenovaTransformersEmbeddings } from '../embed/hf';
|
9 |
+
import { MemoryVectorStore } from "langchain/vectorstores/memory";
|
|
|
|
|
|
|
10 |
|
11 |
function ChatWindow({
|
12 |
stopStrings,
|
|
|
31 |
console.log('found file text splitting into chunks')
|
32 |
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000 });
|
33 |
const docs = await textSplitter.createDocuments([fileText]);
|
|
|
|
|
|
|
34 |
let queryResult;
|
35 |
+
let qaPrompt;
|
36 |
+
console.log(docs);
|
37 |
try {
|
38 |
+
const vectorStore = await MemoryVectorStore.fromTexts(
|
39 |
+
[...docs.map(doc => doc.pageContent)],
|
40 |
+
[...docs.map((v, k) => k)],
|
41 |
+
new XenovaTransformersEmbeddings()
|
42 |
+
)
|
43 |
+
let queryResult = await vectorStore.similaritySearch(userInput, 1);
|
44 |
+
console.log("queryResult", queryResult);
|
45 |
+
qaPrompt =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
`You are an AI assistant providing helpful advice. You are given the following extracted parts of a long document and a question. Provide a conversational answer based on the context provided.
|
47 |
You should only provide hyperlinks that reference the context below. Do NOT make up hyperlinks.
|
48 |
If you can't find the answer in the context below, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
49 |
If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
|
50 |
Question: ${userInput}
|
51 |
=========
|
52 |
+
${queryResult[0].pageContent}
|
53 |
=========
|
54 |
Answer:
|
55 |
`
|
56 |
+
} catch (err) {
|
57 |
+
console.log(err);
|
58 |
+
}
|
59 |
send(qaPrompt, maxTokens, stopStrings);
|
60 |
} else {
|
61 |
send(userInput, maxTokens, stopStrings);
|
src/embed/hf.ts
CHANGED
@@ -1,62 +1,42 @@
|
|
1 |
-
import {
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
model = "Xenova/all-MiniLM-L6-v2"
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
revision?: string;
|
25 |
-
quantized?: boolean;
|
26 |
-
progress_callback?: Function | null;
|
27 |
-
} = {}) {
|
28 |
-
try {
|
29 |
-
// Since Transformers.js is an ESM package, we use the dynamic `import` syntax instead of `require`.
|
30 |
-
// Also, since we use `"module": "commonjs"` in tsconfig.json, we use the following workaround to ensure
|
31 |
-
// the dynamic import is not transpiled to a `require` statement.
|
32 |
-
// For more information, see https://github.com/microsoft/TypeScript/issues/43329#issuecomment-1008361973
|
33 |
-
TransformersApi = Function('return import("@xenova/transformers")')();
|
34 |
-
} catch (e) {
|
35 |
-
throw new Error(
|
36 |
-
"Please install the @xenova/transformers package to use the TransformersEmbeddingFunction, `npm install -S @xenova/transformers`."
|
37 |
-
);
|
38 |
}
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
quantized,
|
47 |
-
revision,
|
48 |
-
progress_callback,
|
49 |
-
})
|
50 |
-
);
|
51 |
-
} catch (e) {
|
52 |
-
reject(e);
|
53 |
-
}
|
54 |
});
|
55 |
}
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
}
|
62 |
}
|
|
|
1 |
+
import { pipeline } from "@xenova/transformers";
|
2 |
+
import { Embeddings, EmbeddingsParams } from "langchain/embeddings/base";
|
3 |
+
|
4 |
+
export interface XenovaTransformersEmbeddingsParams extends EmbeddingsParams {
|
5 |
+
model?: string;
|
6 |
+
}
|
7 |
+
|
8 |
+
export class XenovaTransformersEmbeddings
|
9 |
+
extends Embeddings
|
10 |
+
implements XenovaTransformersEmbeddingsParams
|
11 |
+
{
|
12 |
+
model: string;
|
13 |
+
|
14 |
+
client: any;
|
15 |
+
|
16 |
+
constructor(fields?: XenovaTransformersEmbeddingsParams) {
|
17 |
+
super(fields ?? {});
|
18 |
+
this.model = fields?.model ?? "Xenova/all-MiniLM-L6-v2";
|
19 |
+
}
|
20 |
+
|
21 |
+
async _embed(texts: string[]): Promise<number[][]> {
|
22 |
+
if (!this.client) {
|
23 |
+
this.client = await pipeline("embeddings", this.model);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
+
return this.caller.call(async () => {
|
27 |
+
return await Promise.all(
|
28 |
+
texts.map(async (t) => (await this.client(t, {
|
29 |
+
pooling: "mean", normalize: true
|
30 |
+
})).data)
|
31 |
+
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
});
|
33 |
}
|
34 |
|
35 |
+
embedQuery(document: string): Promise<number[]> {
|
36 |
+
return this._embed([document]).then((embeddings) => embeddings[0]);
|
37 |
+
}
|
38 |
+
|
39 |
+
embedDocuments(documents: string[]): Promise<number[][]> {
|
40 |
+
return this._embed(documents);
|
41 |
}
|
42 |
}
|