Spaces:
Build error
Build error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. | |
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
https://huggingface.co/models?filter=text-generation | |
""" | |
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. | |
import logging | |
import math | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from itertools import chain | |
from typing import Optional | |
import datasets | |
from datasets import load_dataset | |
import evaluate | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
MODEL_FOR_CAUSAL_LM_MAPPING, | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
default_data_collator, | |
is_torch_tpu_available, | |
set_seed, | |
) | |
from transformers.testing_utils import CaptureLogger | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.23.0.dev0") | |
require_version( | |
"datasets>=1.8.0", | |
"To fix: pip install -r examples/pytorch/language-modeling/requirements.txt", | |
) | |
logger = logging.getLogger(__name__) | |
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." | |
) | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "If training from scratch, pass a model type from the list: " | |
+ ", ".join(MODEL_TYPES) | |
}, | |
) | |
config_overrides: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Override some existing default config settings when a model is trained from scratch. Example: " | |
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | |
) | |
}, | |
) | |
config_name: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "Pretrained config name or path if not the same as model_name" | |
}, | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "Pretrained tokenizer name or path if not the same as model_name" | |
}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "Where do you want to store the pretrained models downloaded from huggingface.co" | |
}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={ | |
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not." | |
}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={ | |
"help": "The specific model version to use (can be a branch name, tag name or commit id)." | |
}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
def __post_init__(self): | |
if self.config_overrides is not None and ( | |
self.config_name is not None or self.model_name_or_path is not None | |
): | |
raise ValueError( | |
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the dataset to use (via the datasets library)."}, | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The configuration name of the dataset to use (via the datasets library)." | |
}, | |
) | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a text file)."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)." | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
block_size: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Optional input sequence length after tokenization. " | |
"The training dataset will be truncated in block of this size for training. " | |
"Default to the model max input length for single sentence inputs (take into account special tokens)." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, | |
metadata={"help": "Overwrite the cached training and evaluation sets"}, | |
) | |
validation_split_percentage: Optional[int] = field( | |
default=5, | |
metadata={ | |
"help": "The percentage of the train set used as validation set in case there's no validation split" | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
keep_linebreaks: bool = field( | |
default=True, | |
metadata={"help": "Whether to keep line breaks when using TXT files or not."}, | |
) | |
def __post_init__(self): | |
if ( | |
self.dataset_name is None | |
and self.train_file is None | |
and self.validation_file is None | |
): | |
raise ValueError( | |
"Need either a dataset name or a training/validation file." | |
) | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in [ | |
"csv", | |
"json", | |
"txt", | |
], "`train_file` should be a csv, a json or a txt file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in [ | |
"csv", | |
"json", | |
"txt", | |
], "`validation_file` should be a csv, a json or a txt file." | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser( | |
(ModelArguments, DataTrainingArguments, TrainingArguments) | |
) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file( | |
json_file=os.path.abspath(sys.argv[1]) | |
) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_clm", model_args, data_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if ( | |
os.path.isdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif ( | |
last_checkpoint is not None and training_args.resume_from_checkpoint is None | |
): | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
if "validation" not in raw_datasets.keys(): | |
raw_datasets["validation"] = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
split=f"train[:{data_args.validation_split_percentage}%]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
raw_datasets["train"] = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
split=f"train[{data_args.validation_split_percentage}%:]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
data_files = {} | |
dataset_args = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = ( | |
data_args.train_file.split(".")[-1] | |
if data_args.train_file is not None | |
else data_args.validation_file.split(".")[-1] | |
) | |
if extension == "txt": | |
extension = "text" | |
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
**dataset_args, | |
) | |
# If no validation data is there, validation_split_percentage will be used to divide the dataset. | |
if "validation" not in raw_datasets.keys(): | |
raw_datasets["validation"] = load_dataset( | |
extension, | |
data_files=data_files, | |
split=f"train[:{data_args.validation_split_percentage}%]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
**dataset_args, | |
) | |
raw_datasets["train"] = load_dataset( | |
extension, | |
data_files=data_files, | |
split=f"train[{data_args.validation_split_percentage}%:]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
**dataset_args, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config_kwargs = { | |
"cache_dir": model_args.cache_dir, | |
"revision": model_args.model_revision, | |
"use_auth_token": True if model_args.use_auth_token else None, | |
} | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, **config_kwargs | |
) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.config_overrides is not None: | |
logger.info(f"Overriding config: {model_args.config_overrides}") | |
config.update_from_string(model_args.config_overrides) | |
logger.info(f"New config: {config}") | |
tokenizer_kwargs = { | |
"cache_dir": model_args.cache_dir, | |
"use_fast": model_args.use_fast_tokenizer, | |
"revision": model_args.model_revision, | |
"use_auth_token": True if model_args.use_auth_token else None, | |
} | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name, **tokenizer_kwargs | |
) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, **tokenizer_kwargs | |
) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
if model_args.model_name_or_path: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
model = AutoModelForCausalLM.from_config(config) | |
n_params = sum( | |
dict((p.data_ptr(), p.numel()) for p in model.parameters()).values() | |
) | |
logger.info( | |
f"Training new model from scratch - Total size={n_params/2**20:.2f}M params" | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
# Preprocessing the datasets. | |
# First we tokenize all the texts. | |
if training_args.do_train: | |
column_names = raw_datasets["train"].column_names | |
else: | |
column_names = raw_datasets["validation"].column_names | |
text_column_name = "text" if "text" in column_names else column_names[0] | |
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function | |
tok_logger = transformers.utils.logging.get_logger( | |
"transformers.tokenization_utils_base" | |
) | |
def tokenize_function(examples): | |
with CaptureLogger(tok_logger) as cl: | |
output = tokenizer(examples[text_column_name]) | |
# clm input could be much much longer than block_size | |
if "Token indices sequence length is longer than the" in cl.out: | |
tok_logger.warning( | |
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" | |
" before being passed to the model." | |
) | |
return output | |
with training_args.main_process_first(desc="dataset map tokenization"): | |
tokenized_datasets = raw_datasets.map( | |
tokenize_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on dataset", | |
) | |
if data_args.block_size is None: | |
block_size = tokenizer.model_max_length | |
if block_size > 1024: | |
logger.warning( | |
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " | |
"Picking 1024 instead. You can change that default value by passing --block_size xxx." | |
) | |
block_size = 1024 | |
else: | |
if data_args.block_size > tokenizer.model_max_length: | |
logger.warning( | |
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" | |
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." | |
) | |
block_size = min(data_args.block_size, tokenizer.model_max_length) | |
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. | |
def group_texts(examples): | |
# Concatenate all texts. | |
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} | |
total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
# customize this part to your needs. | |
if total_length >= block_size: | |
total_length = (total_length // block_size) * block_size | |
# Split by chunks of max_len. | |
result = { | |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
for k, t in concatenated_examples.items() | |
} | |
result["labels"] = result["input_ids"].copy() | |
return result | |
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder | |
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower | |
# to preprocess. | |
# | |
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information: | |
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map | |
with training_args.main_process_first(desc="grouping texts together"): | |
lm_datasets = tokenized_datasets.map( | |
group_texts, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc=f"Grouping texts in chunks of {block_size}", | |
) | |
if training_args.do_train: | |
if "train" not in tokenized_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = lm_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in tokenized_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = lm_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
def preprocess_logits_for_metrics(logits, labels): | |
if isinstance(logits, tuple): | |
# Depending on the model and config, logits may contain extra tensors, | |
# like past_key_values, but logits always come first | |
logits = logits[0] | |
return logits.argmax(dim=-1) | |
metric = evaluate.load("accuracy") | |
def compute_metrics(eval_preds): | |
preds, labels = eval_preds | |
# preds have the same shape as the labels, after the argmax(-1) has been calculated | |
# by preprocess_logits_for_metrics but we need to shift the labels | |
labels = labels[:, 1:].reshape(-1) | |
preds = preds[:, :-1].reshape(-1) | |
return metric.compute(predictions=preds, references=labels) | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
# Data collator will default to DataCollatorWithPadding, so we change it. | |
data_collator=default_data_collator, | |
compute_metrics=compute_metrics | |
if training_args.do_eval and not is_torch_tpu_available() | |
else None, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics | |
if training_args.do_eval and not is_torch_tpu_available() | |
else None, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples | |
if data_args.max_train_samples is not None | |
else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
max_eval_samples = ( | |
data_args.max_eval_samples | |
if data_args.max_eval_samples is not None | |
else len(eval_dataset) | |
) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
try: | |
perplexity = math.exp(metrics["eval_loss"]) | |
except OverflowError: | |
perplexity = float("inf") | |
metrics["perplexity"] = perplexity | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
kwargs = { | |
"finetuned_from": model_args.model_name_or_path, | |
"tasks": "text-generation", | |
} | |
if data_args.dataset_name is not None: | |
kwargs["dataset_tags"] = data_args.dataset_name | |
if data_args.dataset_config_name is not None: | |
kwargs["dataset_args"] = data_args.dataset_config_name | |
kwargs[ | |
"dataset" | |
] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
else: | |
kwargs["dataset"] = data_args.dataset_name | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |